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Abstract

Methylmercury (MeHg) is highly toxic form of mercury (Hg) and
causes neurotoxicity in humans. Its production in the environment
is enhanced due to human activities such as massive industrialization
and warmer temperatures which facilitate the activities of microbial
methylators. It bioaccumulates mainly in seafood items and threatens
human health. So far, review papers were mainly focused on MeHg
toxicity and controlling soil conditions or soil amendment compounds
to reduce MeHg formation. However, bioremediation plays an important
role in the remediation of the metals in the environmental samples. Less
attention has been paid to MeHg degrading bacteria that can control
MeHg pollution. Therefore, to highlight current research, this review
paper mainly focused on MeHg formation, the environmental conditions
to reduce its formation in the environment, natural MeHg remediation,
and experimentally developed bacteria for MeHg remediation.

Keywords: Methylmercury, Anaerobic bacteria, Demethylation, Safer
environment.

Introduction

Mercury (Hg) is reported as a top three priority pollutant by the
United States Environment Protection Agency (US EPA) and has been
identified by the World Health Organization (WHO) as one of the “ten
leading chemicals of concern” [1-3]. The elemental (Hg®) or inorganic
(Hg?*) form of Hg released into the environment from various natural
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or anthropogenic sources is less toxic to humans [4-
7]. However, these forms are converted to highly toxic
compound methylmercury (MeHg) by anaerobic bacteria
such as sulfate-reducing bacteria (SRB) and remain in
the environment for several days. Consequently, it is
accumulated and magnified in the food substances such as
fish affecting humans and aquatic animals [8-11].

MeHg toxicity was first reported in Minamata City, Japan,
affecting over 2500 people in the 1950s [12,13]. Fishermen
and their families were the most affected people who ate fish
daily [12]. The Minamata disease (MD) was firstrecognized as
a mysterious neurological illness with severe uncontrollable
tremors in Minamata in 1953 [14]. That disease was
reported again between 1964 and 1965 in Niigata, near
Tokyo [15,16]. The Japanese government authoritatively
acknowledged that MeHg-containing seafood consumption
was responsible for Minamata disease in 1968 [14]. Later,
MeHg toxicity was also reported in other places like Ghana,
Guatemala, Iraq, and Pakistan, due to flour consumption
from wheat seeds treated with MeHg compounds [17].

It was reported that the MeHg accumulates in the fish or
rice grains from the surrounding environment [18]. It was
also reported that 75 to 90% of organic mercury exists as
MeHg in those fish and shellfish [19,20]. It threatens the
health of mainly seafood and rice lovers [21,22]. It was
shown that people who eat fish regularly had increased total
mercury levels in their hair than normal persons [23]. In the
US, eating marine fish and shellfish is mainly responsible
for MeHg intake in more than 90% of the population [24].
Hence, MeHg-contaminated fish is treated as the primary
source of MeHg exposure to persons in the US. Americans
take approximately 2.4 pg MeHg per week via fish, and a
significant amount (2.3 pg) was absorbed into the body
[25]. It was also reported that a significant US Gulf Coast
population (30%) had higher MeHg concentrations in their
blood because of eating MeHg-containing fish and developed
neurodevelopmental problems in children [26]. Even in
Florida Everglades for over three decades, Hg pollution had
been a persistent concern due to elevated atmospheric Hg
deposition, the system'’s tendency for methylation, and rapid
bioaccumulation. It was reported that a fetus, newborns,
and children are at a higher health risk since they can have
toxic effects even atlow levels of MeHg exposure [27]. Based
on a US birth cohort study. It was also reported that dental
amalgams and seafood consumption d during pregnancy
could cause respiratory infections in infants [28]. The
maximum allowable daily Hg intake according to WHO and
EPA was reported as 0.23 pg/ Kg/ day and 0.1 pg / Kg/day
[29]. The half-life of MeHg in the human body was about 70
days, due to its slow removal and accumulation behavior in
the body [30]. It was also reported that the inorganic mercury
showed less toxicity in rats with a lethal dose (LD50) of 75
mg/kg, while MeHg showed higher toxicity in guinea pigs,
mice, and rats with LD50 values of 21, 57.6, and 29.9 mg/
kg respectively [31-34]. Persons with 200-500 ng/mL Hg
concentration in the blood or persons who ingest 3-7 pg Hg/
kg per day can show initial lethal effects of methylmercury
[35]. Various health departments and Governments around
the world have recognized the necessity for safeguard

seafood to people; hence the highest safe ingestion limits
for seafood were set as 0.46 ppm Hg and 1.6 pg MeHg/kg
bodyweight as recommended weekly intake by the United
States Food and Drug Agency (US FDA) [29].

It was reported that MeHg could bind to low molecular
mass thiol proteins (LMM SH) like glutathione, high
molecular mass proteins (HMM SH) such as albumin
which contain sulfur or thiol-containing amino acids, and
high molecular mass selenol (HMMSeH) proteins such
as Glutathione peroxidase Px. [35,36]. It was also shown
that it can also bind to nitrogen bases of DNA and RNA;
however, the binding capacity is many times lesser than the
thiol-containing proteins [37-44]. The exchange reactions
between the MeHg-coupled LMM-SH and HMM-SeH proteins
are responsible for the absorption, distribution, and
excretion of MeHg in the human body [45-49]. The formation
of MeHg coupled cysteine compound, Cys-S-HgMe, which
can cross the cell membranes with the help of transporter
L-type large neutral amino acid transporter (LAT1), change
in antioxidant enzymes activity levels and reactive oxygen
species production are mainly responsible for the MeHg
toxicity in the humans [50-55]. It was shown that the nerve
cells were more sensitive to MeHg than the glial cells since
astrocytes contain less glutathione concentration than nerve
cells [56]. It was reported that most of the MeHg (90-95%)
from the ingested fish in humans was absorbed through the
gastrointestinal tract and enters to the central nerves system
[57]. It mainly affects central nervous system, and immune
system of humans leading to visual impairment, tiredness,
convulsions, paralysis of limbs, neurotoxicity, and can also
cause death [58-66].

In the last two decades, much attention has been given
to the bacterial bioremediation for cleaning polluted
environment since it is easier, less time-consuming, and
economically feasible than physical and chemical methods.
The MeHg degrading bacteria were isolated from MeHg-
polluted sites [67,68]. However, the degradation of MeHg
has been much less studied so far [22]. Therefore, this
review article mainly discusses MeHg formation, natural
MeHg remediation, and experimentally developed bacterial-
mediated MeHg remediation.

Methylmercury Formation in the Environment

The inorganic Hg is converted into organic MeHg
by various anaerobic bacteria through the methylation
process in the environmental soil and water [69]. So far,
54 Hg methylating microorganisms were identified which
comprises 37 sulfate reducing bacteria, 8 iron reducing
bacteria, 8 methanogens, and 1 acetogenic microorganism,
that contain the essential genes for methylation, hgcAB
[10,69-72].

MeHg production in the environment depends on total
Hg concentration, as well as several other environmental
abiotic parameters like Hg speciation, pH, redox potential,
temperature, microbial community, and inorganic as well as
organic chelating agents [73]. Recently, a research study on
the worldwide MeHg distribution and environmental factors
of its production reported that MeHg concentration varied
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from 0.009 to 55.7 pg/kg at the different ecosystems, and the
highest Hg methylation potential and MeHg concentration
were found in paddy fields and marine environments,
respectively (Table 1) [74].

In that study, the temperature (high temperature favors
MeHg formation) and precipitation were recognized as
important controllers of MeHg production [74]. It was
also shown that oxidation-reduction potential (ORP)
influences sulfur chemistry, thereby methylation of Hg. The
Hg methylation is promoted by the microbial-mediated
sulfur-reduction as a result of the decrease in ORP. The
increased dissolved sulfide concentrations also decrease
Hg methylation rates due to the removal of inorganic Hg as
a sparingly soluble solid cinnabar or meta-cinnabar [69].
Hg can bind to the dissolved organic matter (DOM) and
affect methylation by the methylating bacteria due to less
availability of inorganic Hg for uptake since DOM molecules
cannot cross the cell membrane of bacteria due to their large
size [75]. The other abiotic factors, like humic and fulvic
acids, were shown to play a role in Hg methylation [8,76].
Hg methylation particularly occurs in the floodplain soils
rich in organic molecules due to their low oxygen conditions
during flooding and organic substrates which serve as
energy source for bacterial metabolism and sources for

Sample MeHg level

enhanced MeHg input to adjacent streams [77]. Recently, it
was reported that up to 9% of Hg was converted to MeHg
in the anaerobic setting in a study to know the input of Hg
in urban runoff derived from historically contaminated soils
and the subsequent production of MeHg in a stream-wetland
complex (Durham, North Carolina) [78].

Production of MeHg in the environment by micro-
organisms is shown in figure 1. Paddy fields, wetlands, lakes,
and marine places which contain anaerobic conditions
are most suitable for MeHg production [79]. The bacteria
and extracellular polymeric substances (EPS) are mainly
accountable for the production of MeHg and accumulate in
those places, as shown in table 2. The transformed MeHg
then accumulated into the food chain. Plants accumulate
104-105 times more MeHg than the surrounding waters
[80]. It was shown that plants and animals contain MeHg
approximately 1.0-6.5 pg/kg and 0.5-200 pg/kg [81,82]. It
was also reported that the eatable clams, crabs, octopus,
oysters, scallops, and squid in the US contain average THg
concentrations ranging from 0.01 to 0.12 pg/kg wet weight
(ww) [83]. The total Hg concentrations in terrapin scute and
blood revealed that the organic form of Hg contributes to
90% of the total Hg [84]. In a recent study, it was showed
that the altered total Hg and MeHg levels in rivers were

Environment description (ng/ Lor pg/Kg)" Location Reference
S <0.02-0.03 Antarctic (Gionfriddo et al. 2016)
now
<0.015-0.118 Canadian Arctic (St. Louis et al. 2005, 2007)
Sea ice <0.02-0.17 Antarctic (Gionfriddo et al. 2016)
<0.02-0.57 Arctic (Beattie et al. 2014)
. N.AY Antarctic (De Ferro et al. 2014)
Polar region . . .
<0.02-0.15 Antarctic (Gionfriddo et al. 2016)
<0.01-0.18 Southern Ocean (Cossaetal. 2011)
Sea water . . .
0.057-0.095 Canadian Arctic (St. Louis et al. 2007)
0.015-178 Canadian Arctic (Kirk et al. 2008)
0.021-0.126 Arctic (Wang et al. 2012)
<0.085-0.257 Antarctic (Vandal et al. 1998)
Water 0.04-30 Canadian Arctic (Lehnherr et al. 2012a; Lehnherr et al. 2012b; St. Louis et
al. 2005)
0.001-0.081 Alaska, USA (Poissant et al. 2008; Naidu et al. 2003)
Lake Sediment 0.26-3.4 glas;eli, USdA (Hammerschmidt et al. 2006)
8 y-Alesund, .
0.4-1.1 Norway (Jiang et al. 2011)
(Loseto et al. 2004;
Soil 0.01-<9.6 Canadian Arctic Oiffer and Siciliano 2009;
St. Pierre 2015)
‘Main rice planting areas,
0.02-1.76 China (Tang et al. 2019)
Non-contaminated 0.84-4.5 Chongqing, China (Tang et al. 2018)
Paddy fields . . .
soil 0.17-1.0 California, USA (Tang et al. 2019)
0.52-1.42 California, USA (Marvin-Dipasquale 2014)
0.01-0.29 Arkansas, USA (Rothenberg et al. 2017)
3 . . (Rothenberg and Feng 2012; Li et al. 2019; Meng et al.
Mining impacted 0.14-67 Guizhou, China 2010, 2014; Zhang et al. 2010a, 2010b)
area Soil 6.0-36.9 Shaanxi, China (Tang et al. 2018)
2.8-10.9 Hunan, China (Meng et al. 2014)
0.3-8.5¢ Guangdong, China (Meng et al. 2014)

“MeHg levels in snow, sea ice, and sea/lake water were represented in ng/L, while in sediment, wetland, and paddy fields soil was represented in pg/kg.
"N.A. indicates data was not available.
‘MeHg level was measured in soil samples from 64 sites in 12 provinces in China, which accounts for 80% of the total rice planting area.
dData from Pb/Zn mining impacted area.

Table 1: Methylmercury levels at various environmental conditions.
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Environmental condition Type of bacteria Reference
SRB (Bae et al. 2014)
Wetland sediments FeRB (Schaefer et al. 2014a, 2014b)
Methanogens (Bae et al. 2019)
Syntrophs (Christensen et al. 2019)
SRB (Podar et al. 2015)
FeRB (Bravo et al. 2018a)
Lake/river sediments Methanogens (Bravo et al. 2018b)
(Christensen et al. 2019)
Syntrophs (Jones et al. 2019)
(Yuan et al. 2019)
SRB (Liu et al. 2014)
. FeRB (Liu et al. 2018)
Paddy soils R
Methanogens (Vishnivetskaya et al. 2018)
Syntrophs
SRB (Podar et al. 2015)
. FeRB (Xuetal. 2019)
Forest soils
Methanogens
Syntrophs
SRB (Bouchet et al. 2018)
Ocean FeRB
Syntrophs
SRB (Podar et al. 2015)
. . FeRB (Gionfriddo et al. 2016)
Marine conditions
Methanogens
Syntrophs (Villar et al. 2020)
SRB (Podar et al. 2015)
. FeRB (Christensen et al. 2019)
Extreme environments
Methanogens
Syntrophs
SRB (Podar et al. 2015)
Bioreactor FeRB (Wang et al. 2019a, 2019b)
Methanogens
Animal hindgut Syntrophs (Podar et al. 2015)

Abbreviations: SRB: sulfate-reducing bacteria; FeRB: iron-reducing bacteria

Table 2: Type of mercury methylators present in diverse environmental conditions.

Anoxic

Anthropogenic
Emissions

Natural
Emissions
-

Wetland

Figure 1: Schematic representation of methylmercury formation in the natural environment.
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important sources of MeHg to estuaries and coastal regions
of the northern Gulf of Mexico (GOM) and were responsible
for the increased levels of MeHg in GOM fish [85]. It was
reported that in the Everglades, MeHg production mainly
occurs at the periphyton region and varies with the season
(3.5 g for the dry season and 37 g for the wet season) and
contains six times more MeHg than the water (0.6 g for the
dry season and 6.6 g for damp season) [17,86].

Natural Methylmercury Remediation in the
Environment

A potential strategy to decrease the MeHg levels in soil
and water is determined by Hg methylation and MeHg
degradation [87]. Recently, a study was conducted to
determine whether specific carbon compounds affect the
production potential of MeHg and methylating microbes’
distribution in those environmental samples [88]. As part
of that study, sediment slurries were treated with alcohols,
polysaccharides, or short-chain fatty acids. The results
showed that lactate, ethanol, and methanol amendments had
slightly increased MeHg, while cellobiose decreased MeHg
production significantly (70%). Microbial communities
were changed to non-hgcAB-containing Firmicutes (90%)
in all the samples treated with cellobiose. These findings
showed that simple methods could be used to decrease
MeHg production in the environment [88]. In recently
published reviews, there is a growing body of evidence
that global and local perturbations influence Hg cycling and
pollution management [22]. A wide range of soil composition
factors determines the sorption, fate, and mobility of Hg
in soils, including soil texture, organic matter content,
hydroxides, and other organic and inorganic complexing
agents determine how Hg is absorbed, the chemical form of
Hg, pH, redox potential (EH), its fate as well as the specific
stability of the bond between Hg and a ligand [77]. For
the proper development of soil remediation techniques to
effectively immobilize Hg by transforming it into stable and
less toxic forms, knowledge of the above-mentioned factors
is crucial [89]. Another method of reducing Hg mobility in
soil is using soil amendments [90]. Organic amendments
are particularly suitable since they show a high potential
to immobilize Hg [90]. According to studies, Hg is usually
bound to reduced sulfur functional groups (thiol, disulfide)
of soil organic matter in an oxidized form such as Hg2+ [91].
It has already been demonstrated that Hg can be removed
from solutions and combustion flue gases, reducing MeHg
levels in rice grains, ad immobilizing MeHg in soil [90-93].
Researchers found that both biochar (BC) and Sugar beet
factory lime (SBFL) treatment reduced the release of total
Hg (Hgt) from the soil but not the methylation and ethylation
of Hg [77]. There was also a report that Hgt, MeHg, and EtHg
mobilization was generally higher at low redox potential and
decreased as redox potential increased, regardless of soil
treatment [77].

Various reports have shown that microorganisms adapt
several metabolic pathways to survive in Hg/MeHg polluted
environmental conditions [67,68]. The mer operon located on
a plasmid or transposon or chromosome is responsible for the
adaptation in Hg polluted environment [94]. The mer operon

codes for MerR and MerD regulatory proteins, MerP, T, and E
transport proteins, and MerA with reductase activity [76,95].
In response to Hg availability, the MerR or MerD regulatory
protein binds at the promoter operator region and regulates
the transcription of the MerA gene. During the bacterial Hg
metabolic process, mercury ions are transported from the
periplasm to the cytoplasm through transport proteins MerP/
MerD, and those ions are taken up by the mercuric reductase
enzyme coded by MerA inside the cytoplasm. The enzyme
reduces Hg?* to mercury gas (Hg?) that diffuses passively out
from the bacteria. Based on the mer determinants, Hg resistant
bacteria are divided into broad and narrow ranges. The Hg-
resistant bacteria, which are limited range contain only the
merA gene, while other bacteria, which are broad range, contain
merB gene in addition to merA gene. The merB produces
an organomercurial lyase enzyme and converts MeHg into
inorganic mercury through the removal of methyl group [76].

Previous studies have shown thatmicrobes degrade MeHg
through oxidative demethylation or reductive demethylation
process [76]. In anaerobic conditions, microbes degrade
MeHg through the oxidative demethylation process; MeHg is
converted to Hg** and carbon dioxide in that process. It was
reported that the sulfur-reducing bacteria and methanogens
are responsible for MeHg degradation in saturated soils
through the oxidative demethylation process [76]. This
oxidative demethylation process has also been observed in
paddy fields with anaerobic conditions [96]. The research
studies also revealed that the bacteria belonging to the
Xanthomonadaceae family (Catenulisporaceae, Frankiaceae,
Mycobacteriaceae, and Thermomonosporaceae) degrade
MeHg in those paddy soils by demethylation pathway in the
presence of Cu [97]. Furthermore, studies have also shown
that Methylosinus trichosporium, an aerobic bacterium,
degrades MeHg through an oxidative demethylation
process, which is linked to Cu metabolic process [96]. In
aerobic (oxic) environmental conditions such as water-
saturated soils, the reductive demethylation process occurs,
another MeHg degradation process. In that mechanism,
the microorganisms contain mer operon coding for merB
organomercurial lyase enzyme that degrades organic
mercury to inorganic mercury, and merA reductase enzyme
that reduce inorganic mercury to element Hg® [98,99].

A recent report on world-wide photic and aphotic zones
of oceans for MeHg degradation capacities through culture-
independent metagenomic and metatranscriptomic studies
revealed that the capacity of biological MeHg degradation
was extensively spread in the open ocean, and the highest
capacity was observed in the mesopelagic zone [100]. It also
revealed the presence of heterotrophic bacteria containing
mere genes at different oceanographic regions and depths
of open ocean, including polar regions. It was reported that
Hg tolerance capacity depends on the bacterial strain, and a
bacterium Alteromonas sp ISS312 unveiled a robust capacity
of MeHg degradation that was isolated from South Atlantic
Ocean bathypelagic water [100]. Recently, much focus was
given to isolation of MeHg-degrading bacteria [101]. In that
report, sixteen MeHg degrading bacteria were isolated from
the contaminated wastewater sludge in Rio Grande do Sul,
Brazil. It also showed that some isolates exhibited MeHg
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resistance to extreme concentrations of 8.7 puM. In that
study, they also showed that the Pseudomonas putida V1
bacterium had only merA gene and converted the 90% of
methylmercury in the medium to gaseous mercury. It was
also reported that it has the ability to degrade MeHg under
various pH (4-8) conditions, and temperatures (10-35°C),
Pseudomonas putida V1 bacterium can grow even at the
high concentration of 11.5 uM of MeHg [101]. Later, it was
revealed that Pseudomonas putida V1 showed an alternative
mechanism of MeHg degradation through the production
of carbon dioxide during MeHg degradation, which did not
involve merB product [101].

MeHg Bioremediation with Recombinant
Technology using Bacteria

Hg and MeHg pollution can be controlled through
bioremediation which is an easy, cost-effective and
environmental-friendly approach than the physical or
chemical methods. The usage of mer operon in Hg resistant
bacteria is an attractive bioremediation approach for
controlling Hg pollution. The mer operon occurs in different
forms and locations in Hg-resistant bacteria. The MerB and
MerA genes play an essential role in MeHg remediation
efforts [102].

Recombinant plasmids were constructed with the
cloning of some genes from the mer operon through Genetic
engineering and introduced into the host bacteria, which
were used to remove Hg from contaminated sites [103].
Other studies have focused on engineering bio-sorbent
strains utilizing metal binding proteins or chelators such as
metallothionein and polyphosphate kinase which play an
essential role in binding the metals [104-107]. Biosorption
is a passive process and hence microorganisms show limited
metal binding capacity. In the Hg biosorption remediation
process, specificmethods are required to remove and recover
Hg from the microorganisms. A recombinant E. coli strain
containing merRTPAB genes was constructed for MeHg
bioremediation and encapsulated in silica beads which act
as a filtration material [107]. Following encapsulation, this
strain also showed degradation of MeHg and exhibited the
same degradation capacity as nonencapsulated cells [107].
Using recombinant microorganisms in the bioremediation
process has certain limitations since runoff water from
bioremediation can contain those unnatural bacteria, which
can lead to a hazard [102]. In packed bed bioreactors,
silica pumice granules are used to adsorb the natural mer-

Matrix Type of bacteria

Soil SRB and methanogens

Soil Methylosinus trichosporium
Paddy soil Catenulisporaceae, Frankiaceae,

Mpycobacteriaceae, and Thermomonosporaceae

South Atlantic Ocean Alteromonas sp ISS312

Sludge sewage from Rio Grande Pseudomonas putida VI

do Sul, Brazil

Waste site Deinococcus radiourans
Wastewater E.coli with mer-ppk fusion plasmid
Water Enterococcus durans

Table 3: Bacteria involved in MeHg remediation.

containing strains of Pseudomonas and it is the only method
used till today to bioremediate and recover Hg at a technical
scale [102]. Recently, MeHg-resistant Lactic acid bacteria
(LAB) were isolated from feces (37) and breast milk (19)
samples respectively from 19 volunteers in West Sekotong
at, Indonesia which is an artisanal and small-scale gold
mining site with high Hg levels. In the research studies,
those bacteria showed different MeHg absorption abilities
ranging from 17.375 to 51.597 mg/g of wet biomass after
24 h incubation. Out of those isolates, two bacteria isolated
from the feces showed the highest Hg removal capacity and
recognized as Enterococcus durans. The bacteria involved
in MeHg remediation from all previous studies were
summarized in table 3.

Perspectives and Recommendations

The recent global changes, such as increased
anthropogenic activities with Hg and climate changes,
can affect the microbial Hg methylation processes in
Hg-contaminated ecosystems. Our knowledge of Hg
methylators in a real environment is still limited and
metagenomic analyses of Hg-contaminated ecosystems in
the future can identify unknown species of Hg methylators
that will enhance our knowledge of MeHg production in real
environmental conditions [108]. In the future, metagenomic
analysis of MeHg polluted environment should be carried
out to identify better MeHg degrading bacteria that will help
in the MeHg remediation process. Strict policies regulating
Hg-related anthropogenic activities and adapting better
remediation procedures can improve environmental and
human health.

Conclusion

Environmental pollution due to natural and
anthropogenic Hg emissions leading to the conversion
of MeHg became a main risk to ecosystems and human
health. The inorganic Hg is converted into organic MeHg by
various anaerobic bacteria through the methylation process
in the environmental soil and water. MeHg production in
the environment depends on total Hg concentration and
several other environmental abiotic parameters like Hg
speciation, pH, redox potential, temperature, microbial
community, and inorganic and organic chelating agents.
A potential strategy to decrease the MeHg levels in the
environment is determined by Hg methylation and MeHg
degradation. MeHg degrading microorganisms contain
MerB gene coding for organomercurial lyase enzyme that

Removal efficiency Reference
- (Barkay et al. 2003)

~95% (Luetal. 2017)
>75% (Zhou et al. 2020)
98.2% (Sanz-Saez et al. 2022)
90% (Cabral et al. 2016)
- (Brim et al. 2000)
>90% (Kiyono et al. 2003)
> 70% (Gasong et al. 2018)
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degrade MeHg to inorganic mercury and MerA gene coding
for reductase, which converts to mercury gas Hg’ This
review highlights that MeHg pollution can be controlled with
bacterial bioremediation, which is an easy, cost-effective and
environment-friendly approach.
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