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Abstract
Methylmercury (MeHg) is highly toxic form of mercury (Hg) and 

causes neurotoxicity in humans. Its production in the environment 
is enhanced due to human activities such as massive industrialization 
and warmer temperatures which facilitate the activities of microbial 
methylators. It bioaccumulates mainly in seafood items and threatens 
human health. So far, review papers were mainly focused on MeHg 
toxicity and controlling soil conditions or soil amendment compounds 
to reduce MeHg formation. However, bioremediation plays an important 
role in the remediation of the metals in the environmental samples. Less 
attention has been paid to MeHg degrading bacteria that can control 
MeHg pollution. Therefore, to highlight current research, this review 
paper mainly focused on MeHg formation, the environmental conditions 
to reduce its formation in the environment, natural MeHg remediation, 
and experimentally developed bacteria for MeHg remediation.

Keywords: Methylmercury, Anaerobic bacteria, Demethylation, Safer 
environment.

Introduction
Mercury (Hg) is reported as a top three priority pollutant by the 

United States Environment Protection Agency (US EPA) and has been 
identified by the World Health Organization (WHO) as one of the ‘’ten 
leading chemicals of concern’’ [1-3]. The elemental (Hg0) or inorganic 
(Hg2+) form of Hg released into the environment from various natural 
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or anthropogenic sources is less toxic to humans [4-
7]. However, these forms are converted to highly toxic 
compound methylmercury (MeHg) by anaerobic bacteria 
such as sulfate-reducing bacteria (SRB) and remain in 
the environment for several days. Consequently, it is 
accumulated and magnified in the food substances such as 
fish affecting humans and aquatic animals [8-11]. 

 MeHg toxicity was first reported in Minamata City, Japan, 
affecting over 2500 people in the 1950s [12,13]. Fishermen 
and their families were the most affected people who ate fish 
daily [12]. The Minamata disease (MD) was first recognized as 
a mysterious neurological illness with severe uncontrollable 
tremors in Minamata in 1953 [14].  That disease was 
reported again between 1964 and 1965 in Niigata, near 
Tokyo [15,16]. The Japanese government authoritatively 
acknowledged that MeHg-containing seafood consumption 
was responsible for Minamata disease in 1968 [14]. Later, 
MeHg toxicity was also reported in other places like Ghana, 
Guatemala, Iraq, and Pakistan, due to flour consumption 
from wheat seeds treated with MeHg compounds [17]. 

It was reported that the MeHg accumulates in the fish or 
rice grains from the surrounding environment [18]. It was 
also reported that 75 to 90% of organic mercury exists as 
MeHg in those fish and shellfish [19,20]. It threatens the 
health of mainly seafood and rice lovers [21,22]. It was 
shown that people who eat fish regularly had increased total 
mercury levels in their hair than normal persons [23]. In the 
US, eating marine fish and shellfish is mainly responsible 
for MeHg intake in more than 90% of the population [24]. 
Hence, MeHg-contaminated fish is treated as the primary 
source of MeHg exposure to persons in the US. Americans 
take approximately 2.4 µg MeHg per week via fish, and a 
significant amount (2.3 μg) was absorbed into the body 
[25]. It was also reported that a significant US Gulf Coast 
population (30%) had higher MeHg concentrations in their 
blood because of eating MeHg-containing fish and developed 
neurodevelopmental problems in children [26]. Even in 
Florida Everglades for over three decades, Hg pollution had 
been a persistent concern due to elevated atmospheric Hg 
deposition, the system’s tendency for methylation, and rapid 
bioaccumulation. It was reported that a fetus, newborns, 
and children are at a higher health risk since they can have 
toxic effects even at low levels of MeHg exposure [27].  Based 
on a US birth cohort study. It was also reported that dental 
amalgams and seafood consumption d during pregnancy 
could cause respiratory infections in infants [28]. The 
maximum allowable daily Hg intake according to WHO and 
EPA was reported as 0.23 μg/ Kg/ day and 0.1 μg / Kg/day 
[29]. The half-life of MeHg in the human body was about 70 
days, due to its slow removal and accumulation behavior in 
the body [30]. It was also reported that the inorganic mercury 
showed less toxicity in rats with a lethal dose (LD50) of 75 
mg/kg, while MeHg showed higher toxicity in guinea pigs, 
mice, and rats with LD50 values of 21, 57.6, and 29.9 mg/
kg respectively [31-34]. Persons with 200–500 ng/mL Hg 
concentration in the blood or persons who ingest 3–7 μg Hg/
kg per day can show initial lethal effects of methylmercury 
[35]. Various health departments and Governments around 
the world have recognized the necessity for safeguard 

seafood to people; hence the highest safe ingestion limits 
for seafood were set as 0.46 ppm Hg and 1.6 μg MeHg/kg 
bodyweight as recommended weekly intake by the United 
States Food and Drug Agency (US FDA) [29]. 

It was reported that MeHg could bind to low molecular 
mass thiol proteins (LMM SH) like glutathione, high 
molecular mass proteins (HMM SH) such as albumin 
which contain sulfur or thiol-containing amino acids, and 
high molecular mass selenol (HMMSeH) proteins such 
as Glutathione peroxidase Px. [35,36]. It was also shown 
that it can also bind to nitrogen bases of DNA and RNA; 
however, the binding capacity is many times lesser than the 
thiol-containing proteins [37-44]. The exchange reactions 
between the MeHg-coupled LMM-SH and HMM-SeH proteins 
are responsible for the absorption, distribution, and 
excretion of MeHg in the human body [45-49]. The formation 
of MeHg coupled cysteine compound, Cys-S-HgMe, which 
can cross the cell membranes with the help of transporter 
L-type large neutral amino acid transporter (LAT1), change 
in antioxidant enzymes activity levels and reactive oxygen 
species production are mainly responsible for the MeHg 
toxicity in the humans [50-55]. It was shown that the nerve 
cells were more sensitive to MeHg than the glial cells since 
astrocytes contain less glutathione concentration than nerve 
cells [56]. It was reported that most of the MeHg (90-95%) 
from the ingested fish in humans was absorbed through the 
gastrointestinal tract and enters to the central nerves system 
[57]. It mainly affects central nervous system, and immune 
system of humans leading to visual impairment, tiredness, 
convulsions, paralysis of limbs, neurotoxicity, and can also 
cause death [58-66].

In the last two decades, much attention has been given 
to the bacterial bioremediation for cleaning polluted 
environment since it is easier, less time-consuming, and 
economically feasible than physical and chemical methods.  
The MeHg degrading bacteria were isolated from MeHg-
polluted sites [67,68]. However, the degradation of MeHg 
has been much less studied so far [22]. Therefore, this 
review article mainly discusses MeHg formation, natural 
MeHg remediation, and experimentally developed bacterial-
mediated MeHg remediation.

Methylmercury Formation in the Environment
The inorganic Hg is converted into organic MeHg 

by various anaerobic bacteria through the methylation 
process in the environmental soil and water [69]. So far, 
54 Hg methylating microorganisms were identified which 
comprises 37 sulfate reducing bacteria, 8 iron reducing 
bacteria, 8 methanogens, and 1 acetogenic microorganism, 
that contain the essential genes for methylation, hgcAB 
[10,69-72].

MeHg production in the environment depends on total 
Hg concentration, as well as several other environmental 
abiotic parameters like Hg speciation, pH, redox potential, 
temperature, microbial community, and inorganic as well as 
organic chelating agents [73]. Recently, a research study on 
the worldwide MeHg distribution and environmental factors 
of its production reported that MeHg concentration varied 
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from 0.009 to 55.7 μg/kg at the different ecosystems, and the 
highest Hg methylation potential and MeHg concentration 
were found in paddy fields and marine environments, 
respectively (Table 1) [74].

In that study, the temperature (high temperature favors 
MeHg formation) and precipitation were recognized as 
important controllers of MeHg production [74]. It was 
also shown that oxidation-reduction potential (ORP) 
influences sulfur chemistry, thereby methylation of Hg. The 
Hg methylation is promoted by the microbial-mediated 
sulfur-reduction as a result of the decrease in ORP. The 
increased dissolved sulfide concentrations also decrease 
Hg methylation rates due to the removal of inorganic Hg as 
a sparingly soluble solid cinnabar or meta-cinnabar [69]. 
Hg can bind to the dissolved organic matter (DOM) and 
affect methylation by the methylating bacteria due to less 
availability of inorganic Hg for uptake since DOM molecules 
cannot cross the cell membrane of bacteria due to their large 
size [75]. The other abiotic factors, like humic and fulvic 
acids, were shown to play a role in Hg methylation [8,76]. 
Hg methylation particularly occurs in the floodplain soils 
rich in organic molecules due to their low oxygen conditions 
during flooding and organic substrates which serve as 
energy source for bacterial metabolism and sources for 

enhanced MeHg input to adjacent streams [77]. Recently, it 
was reported that up to 9% of Hg was converted to MeHg 
in the anaerobic setting in a study to know the input of Hg 
in urban runoff derived from historically contaminated soils 
and the subsequent production of MeHg in a stream–wetland 
complex (Durham, North Carolina) [78].

Production of MeHg in the environment by micro-
organisms is shown in figure 1. Paddy fields, wetlands, lakes, 
and marine places which contain anaerobic conditions 
are most suitable for MeHg production [79]. The bacteria 
and extracellular polymeric substances (EPS) are mainly 
accountable for the production of MeHg and accumulate in 
those places, as shown in table 2. The transformed MeHg 
then accumulated into the food chain. Plants accumulate 
104-105 times more MeHg than the surrounding waters 
[80]. It was shown that plants and animals contain MeHg 
approximately 1.0-6.5 µg/kg and 0.5-200 µg/kg [81,82]. It 
was also reported that the eatable clams, crabs, octopus, 
oysters, scallops, and squid in the US contain average THg 
concentrations ranging from 0.01 to 0.12 µg/kg wet weight 
(ww) [83]. The total Hg concentrations in terrapin scute and 
blood revealed that the organic form of Hg contributes to 
90% of the total Hg [84]. In a recent study, it was showed 
that the altered total Hg and MeHg levels in rivers were 

Environment Sample 
description

MeHg level
(ng/ L or μg/Kg)a Location Reference

Polar region

Snow
<0.02–0.03 Antarctic (Gionfriddo et al. 2016)

≤0.015–0.118 Canadian Arctic (St. Louis et al. 2005, 2007)

Sea ice
<0.02–0.17 Antarctic (Gionfriddo et al. 2016)
<0.02–0.57 Arctic (Beattie et al. 2014)

Sea water

N.A.b Antarctic (De Ferro et al. 2014)
<0.02–0.15 Antarctic (Gionfriddo et al. 2016)
<0.01–0.18 Southern Ocean (Cossa et al. 2011)
0.057–0.095 Canadian Arctic (St. Louis et al. 2007)
0.015–178 Canadian Arctic (Kirk et al. 2008)

0.021–0.126 Arctic (Wang et al. 2012)

  Lake

Water
<0.085–0.257 Antarctic (Vandal et al. 1998)

0.04–30 Canadian Arctic (Lehnherr et al. 2012a; Lehnherr et al. 2012b; St. Louis et 
al. 2005)

Sediment

0.001–0.081 Alaska, USA (Poissant et al. 2008; Naidu et al. 2003)
0.26–3.4 Alaska, USA (Hammerschmidt et al. 2006)

0.4–1.1 Ny-Ålesund,
Norway (Jiang et al. 2011)

Soil 0.01–<9.6 Canadian Arctic
(Loseto et al. 2004;

Oiffer and Siciliano 2009;
St. Pierre 2015)

Paddy fields Non-contaminated
soil

0.02–1.76
cMain rice planting areas, 

China (Tang et al. 2019)

0.84–4.5 Chongqing, China (Tang et al. 2018)
0.17–1.0 California, USA (Tang et al. 2019)
0.52–1.42 California, USA (Marvin-Dipasquale 2014)
0.01–0.29 Arkansas, USA (Rothenberg et al. 2017)

Mining impacted
area Soil

0.14–67 Guizhou, China (Rothenberg and Feng 2012; Li et al. 2019; Meng et al. 
2010, 2014; Zhang et al. 2010a, 2010b)

6.0–36.9 Shaanxi, China (Tang et al. 2018)
2.8–10.9 Hunan, China (Meng et al. 2014)
0.3–8.5d Guangdong, China (Meng et al. 2014)

aMeHg levels in snow, sea ice, and sea/lake water were represented in ng/L, while in sediment, wetland, and paddy fields soil was represented in μg/kg.
bN.A. indicates data was not available. 
cMeHg level was measured in soil samples from 64 sites in 12 provinces in China, which accounts for 80% of the total rice planting area.
dData from Pb/Zn mining impacted area.

Table 1: Methylmercury levels at various environmental conditions.
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Figure 1: Schematic representation of methylmercury formation in the natural environment.

Environmental condition Type of bacteria Reference

Wetland sediments

SRB (Bae et al. 2014)
FeRB (Schaefer et al. 2014a, 2014b)

Methanogens (Bae et al. 2019)
Syntrophs (Christensen et al. 2019)

Lake/river sediments

SRB (Podar et al. 2015)
FeRB (Bravo et al. 2018a)

Methanogens (Bravo et al. 2018b)

Syntrophs
(Christensen et al. 2019)

(Jones et al. 2019)
(Yuan et al. 2019)

Paddy soils

SRB (Liu et al. 2014)
FeRB (Liu et al. 2018)

Methanogens (Vishnivetskaya et al. 2018)
Syntrophs

Forest soils

SRB (Podar et al. 2015)
FeRB (Xu et al. 2019)

Methanogens
Syntrophs

Ocean
SRB (Bouchet et al. 2018)
FeRB

Syntrophs

Marine conditions

SRB (Podar et al. 2015)
FeRB (Gionfriddo et al. 2016)

Methanogens
Syntrophs (Villar et al. 2020)

Extreme environments

SRB (Podar et al. 2015)
FeRB (Christensen et al. 2019)

Methanogens
Syntrophs

Bioreactor
SRB (Podar et al. 2015)
FeRB (Wang et al. 2019a, 2019b)

Methanogens
Animal hindgut Syntrophs (Podar et al. 2015)
Abbreviations: SRB: sulfate-reducing bacteria; FeRB: iron-reducing bacteria

Table 2: Type of mercury methylators present in diverse environmental conditions.
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important sources of MeHg to estuaries and coastal regions 
of the northern Gulf of Mexico (GOM) and were responsible 
for the increased levels of MeHg in GOM fish [85]. It was 
reported that in the Everglades, MeHg production mainly 
occurs at the periphyton region and varies with the season 
(3.5 g for the dry season and 37 g for the wet season) and 
contains six times more MeHg than the water (0.6 g for the 
dry season and 6.6 g for damp season) [17,86].

Natural Methylmercury Remediation in the 
Environment

A potential strategy to decrease the MeHg levels in soil 
and water is determined by Hg methylation and MeHg 
degradation [87]. Recently, a study was conducted to 
determine whether specific carbon compounds affect the 
production potential of MeHg and methylating microbes’ 
distribution in those environmental samples [88]. As part 
of that study, sediment slurries were treated with alcohols, 
polysaccharides, or short-chain fatty acids. The results 
showed that lactate, ethanol, and methanol amendments had 
slightly increased MeHg, while cellobiose decreased MeHg 
production significantly (70%). Microbial communities 
were changed to non-hgcAB-containing Firmicutes (90%) 
in all the samples treated with cellobiose. These findings 
showed that simple methods could be used to decrease 
MeHg production in the environment [88]. In recently 
published reviews, there is a growing body of evidence 
that global and local perturbations influence Hg cycling and 
pollution management [22]. A wide range of soil composition 
factors determines the sorption, fate, and mobility of Hg 
in soils, including soil texture, organic matter content, 
hydroxides, and other organic and inorganic complexing 
agents determine how Hg is absorbed, the chemical form of 
Hg, pH, redox potential (EH), its fate as well as the specific 
stability of the bond between Hg and a ligand [77]. For 
the proper development of soil remediation techniques to 
effectively immobilize Hg by transforming it into stable and 
less toxic forms, knowledge of the above-mentioned factors 
is crucial [89]. Another method of reducing Hg mobility in 
soil is using soil amendments [90]. Organic amendments 
are particularly suitable since they show a high potential 
to immobilize Hg [90]. According to studies, Hg is usually 
bound to reduced sulfur functional groups (thiol, disulfide) 
of soil organic matter in an oxidized form such as Hg2+ [91]. 
It has already been demonstrated that Hg can be removed 
from solutions and combustion flue gases, reducing MeHg 
levels in rice grains, ad immobilizing MeHg in soil [90-93]. 
Researchers found that both biochar (BC) and Sugar beet 
factory lime (SBFL) treatment reduced the release of total 
Hg (Hgt) from the soil but not the methylation and ethylation 
of Hg [77]. There was also a report that Hgt, MeHg, and EtHg 
mobilization was generally higher at low redox potential and 
decreased as redox potential increased, regardless of soil 
treatment [77].

Various reports have shown that microorganisms adapt 
several metabolic pathways to survive in Hg/MeHg polluted 
environmental conditions [67,68]. The mer operon located on 
a plasmid or transposon or chromosome is responsible for the 
adaptation in Hg polluted environment [94]. The mer operon 

codes for MerR and MerD regulatory proteins, MerP, T, and E 
transport proteins, and MerA with reductase activity [76,95]. 
In response to Hg availability, the MerR or MerD regulatory 
protein binds at the promoter operator region and regulates 
the transcription of the MerA gene. During the bacterial Hg 
metabolic process, mercury ions are transported from the 
periplasm to the cytoplasm through transport proteins MerP/
MerD, and those ions are taken up by the mercuric reductase 
enzyme coded by MerA inside the cytoplasm.  The enzyme 
reduces Hg2+ to mercury gas (Hg0) that diffuses passively out 
from the bacteria. Based on the mer determinants, Hg resistant 
bacteria are divided into broad and narrow ranges. The Hg-
resistant bacteria, which are limited range contain only the 
merA gene, while other bacteria, which are broad range, contain 
merB gene in addition to merA gene. The merB produces 
an organomercurial lyase enzyme and converts MeHg into 
inorganic mercury through the removal of methyl group [76]. 

Previous studies have shown that microbes degrade MeHg 
through oxidative demethylation or reductive demethylation 
process [76]. In anaerobic conditions, microbes degrade 
MeHg through the oxidative demethylation process; MeHg is 
converted to Hg2+ and carbon dioxide in that process. It was 
reported that the sulfur-reducing bacteria and methanogens 
are responsible for MeHg degradation in saturated soils 
through the oxidative demethylation process [76]. This 
oxidative demethylation process has also been observed in 
paddy fields with anaerobic conditions [96]. The research 
studies also revealed that the bacteria belonging to the 
Xanthomonadaceae family (Catenulisporaceae, Frankiaceae, 
Mycobacteriaceae, and Thermomonosporaceae) degrade 
MeHg in those paddy soils by demethylation pathway in the 
presence of Cu [97]. Furthermore, studies have also shown 
that Methylosinus trichosporium, an aerobic bacterium, 
degrades MeHg through an oxidative demethylation 
process, which is linked to Cu metabolic process [96]. In 
aerobic (oxic) environmental conditions such as water-
saturated soils, the reductive demethylation process occurs, 
another MeHg degradation process. In that mechanism, 
the microorganisms contain mer operon coding for merB 
organomercurial lyase enzyme that degrades organic 
mercury to inorganic mercury, and merA reductase enzyme 
that reduce inorganic mercury to element Hg0 [98,99]. 

A recent report on world-wide photic and aphotic zones 
of oceans for MeHg degradation capacities through culture-
independent metagenomic and metatranscriptomic studies 
revealed that the capacity of biological MeHg degradation 
was extensively spread in the open ocean, and the highest 
capacity was observed in the mesopelagic zone [100]. It also 
revealed the presence of heterotrophic bacteria containing 
mere genes at different oceanographic regions and depths 
of open ocean, including polar regions. It was reported that 
Hg tolerance capacity depends on the bacterial strain, and a 
bacterium Alteromonas sp ISS312 unveiled a robust capacity 
of MeHg degradation that was isolated from South Atlantic 
Ocean bathypelagic water [100]. Recently, much focus was 
given to isolation of MeHg-degrading bacteria [101]. In that 
report, sixteen MeHg degrading bacteria were isolated from 
the contaminated wastewater sludge in Rio Grande do Sul, 
Brazil. It also showed that some isolates exhibited MeHg 
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resistance to extreme concentrations of 8.7 µM. In that 
study, they also showed that the Pseudomonas putida V1 
bacterium had only merA gene and converted the 90% of 
methylmercury in the medium to gaseous mercury. It was 
also reported that it has the ability to degrade MeHg under 
various pH (4-8) conditions, and temperatures (10–35°C), 
Pseudomonas putida V1 bacterium can grow even at the 
high concentration of 11.5 µM of MeHg [101]. Later, it was 
revealed that Pseudomonas putida V1 showed an alternative 
mechanism of MeHg degradation through the production 
of carbon dioxide during MeHg degradation, which did not 
involve merB product [101].

MeHg Bioremediation with Recombinant 
Technology using Bacteria

Hg and MeHg pollution can be controlled through 
bioremediation which is an easy, cost-effective and 
environmental-friendly approach than the physical or 
chemical methods. The usage of mer operon in Hg resistant 
bacteria is an attractive bioremediation approach for 
controlling Hg pollution. The mer operon occurs in different 
forms and locations in Hg-resistant bacteria. The MerB and 
MerA genes play an essential role in MeHg remediation 
efforts [102].

Recombinant plasmids were constructed with the 
cloning of some genes from the mer operon through Genetic 
engineering and introduced into the host bacteria, which 
were used to remove Hg from contaminated sites [103]. 
Other studies have focused on engineering bio-sorbent 
strains utilizing metal binding proteins or chelators such as 
metallothionein and polyphosphate kinase which play an 
essential role in binding the metals [104-107]. Biosorption 
is a passive process and hence microorganisms show limited 
metal binding capacity. In the Hg biosorption remediation 
process, specific methods are required to remove and recover 
Hg from the microorganisms. A recombinant E. coli strain 
containing merRTPAB genes was constructed for MeHg 
bioremediation and encapsulated in silica beads which act 
as a filtration material [107].  Following encapsulation, this 
strain also showed degradation of MeHg and exhibited the 
same degradation capacity as nonencapsulated cells [107]. 
Using recombinant microorganisms in the bioremediation 
process has certain limitations since runoff water from 
bioremediation can contain those unnatural bacteria, which 
can lead to a hazard [102].  In packed bed bioreactors, 
silica pumice granules are used to adsorb the natural mer-

containing strains of Pseudomonas and it is the only method 
used till today to bioremediate and recover Hg at a technical 
scale [102]. Recently, MeHg-resistant Lactic acid bacteria 
(LAB) were isolated from feces (37) and breast milk (19) 
samples respectively from 19 volunteers in West Sekotong 
at, Indonesia which is an artisanal and small-scale gold 
mining site with high Hg levels. In the research studies, 
those bacteria showed different MeHg absorption abilities 
ranging from 17.375 to 51.597 mg/g of wet biomass after 
24 h incubation. Out of those isolates, two bacteria isolated 
from the feces showed the highest Hg removal capacity and 
recognized as Enterococcus durans. The bacteria involved 
in MeHg remediation from all previous studies were 
summarized in table 3.

Perspectives and Recommendations
The recent global changes, such as increased 

anthropogenic activities with Hg and climate changes, 
can affect the microbial Hg methylation processes in 
Hg-contaminated ecosystems. Our knowledge of Hg 
methylators in a real environment is still limited and 
metagenomic analyses of Hg-contaminated ecosystems in 
the future can identify unknown species of Hg methylators 
that will enhance our knowledge of MeHg production in real 
environmental conditions [108]. In the future, metagenomic 
analysis of MeHg polluted environment should be carried 
out to identify better MeHg degrading bacteria that will help 
in the MeHg remediation process. Strict policies regulating 
Hg-related anthropogenic activities and adapting better 
remediation procedures can improve environmental and 
human health.

Conclusion
Environmental pollution due to natural and 

anthropogenic Hg emissions leading to the conversion 
of MeHg became a main risk to ecosystems and human 
health. The inorganic Hg is converted into organic MeHg by 
various anaerobic bacteria through the methylation process 
in the environmental soil and water. MeHg production in 
the environment depends on total Hg concentration and 
several other environmental abiotic parameters like Hg 
speciation, pH, redox potential, temperature, microbial 
community, and inorganic and organic chelating agents. 
A potential strategy to decrease the MeHg levels in the 
environment is determined by Hg methylation and MeHg 
degradation. MeHg degrading microorganisms contain 
MerB gene coding for organomercurial lyase enzyme that 

Matrix Type of bacteria Removal efficiency Reference
Soil SRB and methanogens - (Barkay et al. 2003)
Soil Methylosinus trichosporium ~95% (Lu et al. 2017)

Paddy soil Catenulisporaceae, Frankiaceae, 
Mycobacteriaceae, and Thermomonosporaceae > 75% (Zhou et al. 2020)

South Atlantic Ocean Alteromonas sp ISS312 98.2% (Sanz-Sáez et al. 2022)

Sludge sewage from Rio Grande 
do Sul, Brazil Pseudomonas putida V1 90% (Cabral et al. 2016)

Waste site Deinococcus radiourans - (Brim et al. 2000)
Wastewater E.coli with mer-ppk fusion plasmid >90% (Kiyono et al. 2003)
Water Enterococcus durans > 70% (Gasong et al. 2018)

Table 3: Bacteria involved in MeHg remediation.
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degrade MeHg to inorganic mercury and MerA gene coding 
for reductase, which converts to mercury gas Hg0. This 
review highlights that MeHg pollution can be controlled with 
bacterial bioremediation, which is an easy, cost-effective and 
environment-friendly approach.
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