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Abstract
This study aimed to rank cancers based on the strength of the 

relationship between the comprehensive mRNA expression levels of the 
most harmful or protective genes and patient survival. Using The Cancer 
Genome Atlas dataset that includes the RNA sequencing and clinical 
data, we investigated not only gene specific prognostic availability, but 
also comprehensive prognostic availability of prognostic genes filtered 
by the Cox coefficient values, and ranked cancers using a specially 
designed prognostic indicator. Using Kaplan–Meier plots, we found that 
cancers vary in the strength of the influence of their prognostic genes, 
and can be ranked based on this finding. There is a high probability that 
the treatment developed by using methods that reduce or increase the 
expression levels of biomarkers, for cancers that ranked at the bottom 
will not be efficient. The results of this study could be used as scientific 
evidence for the same.
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Introduction
To perform the most comprehensive research possible, we used the 

Cancer Genome Atlas (TCGA) dataset including clinical, whole genome 
sequencing, exome sequencing, RNA sequencing (RNA-Seq), small RNA-
Seq, bisulfite-Seq, and reverse phase array information to identify the 
pathways commonly altered in different cancers [1-11]. 

There are various approaches for cancer therapy, such as surgery, 
radiotherapy, immunotherapy, and chemotherapy. Usually, most of the 
chemotherapeutic methods reduce or increase the expression levels of the 
proteins or genes related to patient survival. However, few biomarkers 
can be used efficiently in the treatment of some cancers. This research 
provided scientific evidence of the significant relationships between the 
clinical outcomes and the comprehensive mRNA expression levels of 
prognostic genes in some types of cancer. In this study, we formulated 
an indicator called the prognostic score. The results of this study can be 
used as a guide in the development of the cure for some cancers.

Materials and Methods
Codes and files

All files and R codes generated for this study, including figures and 
tables, can be downloaded from the author’s github page (https://
github.com/Minhyeong-1022/TCGA_mRNA-expression_survival_
correlation_research). The scripts were run on a Samsung laptop 9 with 
an i5 processor and 8 GB RAM, running R 3.5.1 on Windows 10.
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Construction of the prognostic indicator model
To convert the RNA-Seq and clinical data into R source 

codes, we used the getFirehoseData function from the R 
library named RTCGAToolbox, which pulls TCGA data from 
https://tcga-data.nci.nih.gov/tcga/, in September 2019. 
All clinical follow-up information was extracted from the 
“clinical” files for each cancer, and only patient information 
of the clinical events was included in this analysis. TCGA 
dataset provides mRNA expression data obtained from two 
methods, RNA-Seq and RNA-SeqV2. We used RNA-SeqV2 
because it is the most recent version. “RNASeq2GeneNorm” 
files were formed by RSEM, which is a method of reporting 
the mRNA expression levels, and outputted by the RSEM 
software [12]. The genes, for each cancer, with expression 
values greater than 1 were included in this model. The 
prognostic scores were determined from squared regression 
(R2) values, and the ratio of genes with p-values less than or 
equal to 0.01 was generated from each term of the Cox model. 
The R2 values, which are the Cox coefficient and Pearson 
correlation coefficient values of R1 values, were generated 
for each cancer. The R1 values, which are the Pearson 
correlation coefficient values of patient-specific survival 
days to death and mRNA expression values (RSEM) of each 
gene, were generated for each gene. The information from 
TCGA dataset, including the number of genes selected using 
the p-values generated from the Cox model, are represented 
in Table 1. Prognostic scores were also generated for each 
cancer. The formula used to generate the comprehensive 
prognostic indicator is represented below. 

R1 = Pearson cor (mRNA expression values, Days to death) 

R2 = Pearson cor (Cox coefficient, R1)

Prognostic 2(    )  
(    )

R Number of selected genesscore
Number of total genes

=

Information of the multivariate Cox model used in 
the analysis

Gene-specific Cox coefficient values and p-values for 16 
cancers were generated in the previous study, published in 
February 2016, by Jordan Anaya at University of Virginia 
[13,14]. We used the data file “All genes, p-values, Cox 

coefficients for each cancer,” and it can be downloaded 
online at (https://peerj.com/articles/1499/#supp-1). 

Results
We analyzed TCGA data on a number of patients with 

RNA-Seq data and mature clinical follow-up information. 
Fourteen cancers, including acute myeloid leukemia (AML), 
bladder urothelial carcinoma (BLCA), breast invasive 
carcinoma (BRCA), colon adenocarcinoma (COAD), head 
and neck squamous cell carcinoma (HNSC), kidney clear 
cell renal carcinoma (KIRC), lung adenocarcinoma (LUAD), 
lung squamous cell carcinoma (LUSC), ovarian serous 
cystadenocarcinoma (OV), cervical squamous cell carcinoma 
and endocervical adenocarcinoma (CESC), kidney papillary 
renal cell carcinoma (KIRP), liver hepatocellular carcinoma 
(LIHC), skin cutaneous melanoma (SKCM), and stomach 
adenocarcinoma (STAD) were studied.

This study aimed at ranking cancers, based on the 
sensitivity of the cancer to the expression levels of their 
prognostic genes, using a specially formulated indicator 
called the prognostic score. To achieve this, the multivariate 
Cox proportions hazards model [15], which is a standard 
regression method to research clinical data [16-19], was 
used. The data table in the previous study [13,14], including 
gene-specific Cox coefficient values and p-values for 16 
cancers, was used. 

In previous studies, the Cox coefficient values and 
p-values, provided from each term of the Cox model, were 
used to analyze the influence of the mRNA expression level 
of each gene on patient survival. There were significant 
deviations of patient survival patterns, based on the 
expression levels of genes that have extreme Cox coefficient 
values, and we checked these deviations using Kaplan–
Meier plots for all cancers (Figure 1d-g). Patient survival in 
some types of cancers was significantly influenced by the 
expression levels of the genes. This was however, not the 
case for other types of cancers because cancers vary in their 
sensitivity to the expression levels of prognostic genes. We 
calculated the prognostic scores for all types of cancers in 
this study. Patient survival was influenced by not only the R2 
values, but also the ratio of the selected genes. The cancers 
differed in their prognostic scores, and a bar chart showing 

Cancer type Number of patients Number of total genes Number of selected genes (Raw P-value < 0.01)
OV 591 16923 115

BRCA 1097 16632 695
COAD 458 16408 963
BLCA 412 16367 1557
KIRP 291 16429 3305
CESC 307 16359 951
LUAD 522 16777 2028
STAD 443 16914 852
HNSC 528 16642 832
LUSC 504 16972 180
LAML 200 15251 599
SKCM 470 16058 2400
LIHC 377 15850 1766
KIRC 537 16665 5447

Table 1: Characteristics of TCGA dataset and investigated numbers of selected genes.
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Figure 1: Distinct difference of survival patterns by prognostic score. 
(a) Bar-chart shows the rank of cancers by prognostic score. Prognostic score was mostly determined by R2 which is the squared regression of cox coefficient 
and the Pearson correlation coefficient (R1) of patient-specific survival days to death and mRNA expression for each gene. (b) Scatter plot related to R2 of 
KIRC which ranked top in bar-chart and (c) R2 of OV which ranked bottom in bar-chart. (d), (e), (f), (g) Kaplan-Meier plots comparing survival days of KIRC 
to survival days of OV patients for the 100 most protective genes and for the 100 most harmful genes.

the ranking of the cancers is displayed in Figure 1. The 
expression levels of the prognostic genes of the top ranked 
cancers influenced the patient clinical outcomes more than 
the expression levels of those of the bottom ranked cancers.

For all of 14 cancers used in this study, the numbers 
of total genes and the numbers of genes selected by raw 
p-value of less than or equal to 0.01 were represented on 
the table above. The ratio of these two would be factor of 
prognostic indicator.

The R2 value of KIRC, which had the highest prognostic 
score among the 14 cancers, (Figure 1b) was more 
significant than that of OV (Figure 1c), which was ranked at 
the bottom. KIRC and OV markedly differed in their patient 
survival patterns, obtained using the expression levels of 
their prognostic genes. As shown in figure 1, KIRC, unlike 
OV, was found to be very sensitive to gene expression. The 
prognostic sensitivity of the other cancers to the expression 
levels of their prognostic genes followed the ranking (Figure 
1a). Supplemental materials, including Kaplan–Meier plots 
and scatter plots for other cancers, can be downloaded from 
the github page.

Discussion
The mRNA expression levels of protective or harmful 

genes, filtered by the Cox coefficient values, influence patient 
survival differently in different types of cancers. To rank the 
cancers, based on the influence of the expression levels of the 
prognostic genes on clinical outcomes, a specially formulated 
indicator called the prognostic score was used in this study. 
In conclusion, it was successfully used to predict the ranking 
of the different types of cancers. The results of this study can 

be used as scientific evidence for the development of the cure 
for different types of cancer by considering the sensitivity of 
the cancer to the expression levels of its prognostic genes. 
For example, as shown in figure 1, there is a high probability 
that the treatment developed for OV with chemotherapeutic 
methods that reduce or increase the mRNA expression and 
protein levels will not be efficient. However, developing 
treatment for KIRC with chemotherapeutic methods could 
be successful.
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