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Abstract
The pharmacology of azithromycin, and the actions of certain bee 

products, suggests the possibility of overlap with the pathophysiology 
of COVID-19 at several points in the disease process. First, intercellular 
epithelial tight junctions of the respiratory tract serve as a critical barrier to 
invaders. Pathophysiological factors capable of disrupting this epithelial 
barrier include viral virulence factors such as those observed for other 
coronaviruses; virulence factors derived from potentially synergistic 
pathogens such as Candida albicans and Porphyramonas gingivalis; 
and imbalances in the host inflammatory response. Azithromycin, and 
to a lesser extent, certain bee products, appear to have actions that 
oppose such processes. Second, the matrikine PGP or its derivatives 
may contribute to risk in individuals at high risk for serious COVID-19 
infection, especially during reactivation; but azithromycin is capable of 
modulating PGP in some contexts. Third, the most serious COVID-19 
infections are associated with massive upregulation of inflammatory 
cytokines such as IL-6, TNF alpha, and other inflammatory cytokines. 
The anti-inflammatory actions of azithromycin and bee derived products 
such as melittin are potentially capable of modulating these processes, as 
well. Azithromycin is already in current use as a treatment for COVID-19; 
however, it’s utility as a protector of epithelial barrier function would 
be most likely to be realized in prophylactic context rather than in a 
treatment context. Similarly, since the anti-inflammatory effects of 
bee products take time, their effectiveness of melittin and other bee 
products would be expected to be maximized in a prophylactic context. 
In the context of the current pandemic, prophylaxis with azithromycin, 
bee products, or both, might be warranted for individuals at high risk for 
serious COVID-19 infection. 
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Introduction
The search is currently underway for effective and potentially 

lifesaving treatments for the COVID-19, the new and devastating 
pandemic. The majority of individuals exposed to the virus do not 
require hospitalization; but for a minority of patients, especially those of 
older ages or with predisposing risk factors, the disease can be deadly. 
Thanks to the astonishing number of COVID-19 patients requiring 
hospitalization and mechanical ventilation, the current pandemic has 
strained healthcare systems around the world to and beyond their limits. 

Azithromycin has been used with hydroxychloroquine for treatment 
of patients with COVID-19 infection or suspected COVID-19 infection, 
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and there is some preliminary data that supports their use 
[1]. Even so, the success of such treatments may be limited 
when applied to patients at the peak of COVID-19 symptoms 
and in potential respiratory collapse. 

On the basis of known pathophysiology of COVID-19 
and other coronaviruses, the current discussion explores 
the use of two categories of agents for use in prophylaxis 
in individuals at high risk for serious or life threatening 
COVID-19 infection: the antibiotic azithromycin (and 
perhaps newer generation macrolides); and that of 
compounds derived from bee products such as bee venom 
and propolis, 

Dysfunction of epithelial tight junctions: a pathway 
for viral invasion 

Epithelial intercellular tight junctions define epithelial 
cell polarity and serve as a physical defense against 
pathogens. A number of factors contribute to the formation 
and maintenance of epithelial tight junctions, including PDZ 
polarity proteins and their and associated complexes; zonula 
occludens proteins (ZO-1 and ZO-2); E-cadherin; occludin; 
JAM-A, and claudins 1, 3, 4, 5, and 18. It is likely that other 
proteins participate in this process, as well [2,3]. 

Epithelial tight junctions function as a barrier capable 
of repelling would-be pathogenic invaders; but invasive 
pathogens have armaments of their own. A number of 
important viral pathogens encode for virulence factors 
capable of decreasing tight junction integrity, thus allowing 
for pathogenic invasion. The influenza A NS1 protein 
encodes for a virulence factor that binds to PDZ proteins, 
disrupting epithelial cell polarity and intercellular tight 
junctions; rhinoviruses disrupt tight junction integrity 
via downregulation of Zonula occludens -1 (ZO-1), a tight 
junction associated protein; and Human immunodeficiency 
virus-1 (HIV-1) effects junctional disruption both by 
remodeling of the cytoskeleton, by increasing claudin-2, 
a tight junction pore-forming protein, and by decreasing 
claudin-1, a tight junction sealing protein [4-6]. 

Coronaviruses may target the epithelial tight junction, as 
well. SARS CoV-1, a human coronavirus of the respiratory 
tract resembling COVID-19, encodes for a virulence protein 
E that targets the CRUMBS3-PALS1-PATJ polarity complex. 
The SARS CoV-1 E protein binds to PALS1, a PDZ protein 
in this complex, thereby disrupting epithelial cell polarity 
and reducing trans epithelial electrical resistance (TER) 
[7]. Similarly, porcine epidemic diarrhea, a gastrointestinal 
coronavirus in pigs, downregulates six proteins involved in 
maintenance of epithelial tight junctional integrity: ZO-1, 
ZO-2, occludin, claudin-1, claudin-4, and claudin-5 [8,9]. It 
is not yet known whether COVID-19 or feline coronavirus 
participate directly in the degradation of epithelial tight 
junctions, but both promote secretion of TNF-alpha and IFN-
gamma, cytokines that have been associated with increases 
in barrier dysfunction and mislocalization of tight junction 
proteins such as JAM-A, claudin 4, and claudin 5 [10]. 

By breaking down the epithelial barriers, such processes 
increase the potential for COVID-19 invasion and penetration. 

In contrast to the above processes, azithromycin, a drug 
currently in use for treatment of symptomatic COVID-19, 
exhibits a sealing effect on respiratory tight junctions which 
is independent of its antimicrobial effect. Azithromycin has 
been found to alter processing and localization of sealant 
molecules such as claudin 1, claudin 4, occludin, and JAM-A; 
and the drug also increases TER [11]. Still, with respect to 
COVID-19, a question arises as to what degree this action 
of azithromycin could aid in ameliorating pulmonary 
compromise in a patient who is already exhibiting 
pulmonary symptoms. After all, by that point, the virus has 
already penetrated the respiratory epithelium. Thus, this 
sealing action of azithromycin on respiratory epithelial 
tight junctions would thus seem to show treater promise 
as a prophylactic. For example, it could be used to decrease 
severity of COVID-1 infection in high risk individuals. 

Another category that might hold promise for COVID-19 
prophylaxis is that of compounds derived from bees. For 
example, in a keratinocytes derived cell line, Brazilian Green 
bee propolis was found to rescue mislocalized claudin 1. 
Thus, compounds within bee propolis might exhibit sealant 
effects on epithelial tight junctions [12]. Further research is 
warranted. 

Tight junctions and risk factors associated with 
severe COVID-19 infection

When it comes to the maintenance of epithelial tight 
junctional integrity, youth may advantage. Young mice have 
more tight junction-sealing claudins than do older mice. Of 
the junction-sealing claudins, claudins 3, 4, and 18 are the 
most important in the respiratory tract; and claudins 3 and 
4 have been found to exhibit age-related declines in multiple 
tissues, including liver, pancreas, and intestine [13]. In mice, 
claudin-4 plays an important role in the respiratory tract: 
claudin-4 concentrations increase during acute lung injury 
and appear to enable alveolar fluid clearance [14]. 

In an aging population, an additional concern is that oral 
and periodontal pathogens could predispose to a lessening 
of tight junctional integrity in areas that overlap with the 
respiratory tree. In the oral cavity, for example, aging leads 
to hyposalivation, which affects the composition of oral flora 
and leads to increased growth of candida species. The risk 
of oral candidiasis is further augmented by the presence of 
diabetes mellitus or dental prostheses [15]. Candida albicans 
interferes with E-cadherin, a protein shown to be essential 
for maintenance of intracellular tight junctions within the 
mucus membranes of the digestive tract [16], and is probable 
that the yeast does this within the oropharynx as well. By 
interfering with the epithelial barrier of the oropharynx, 
candida albicans might facilitate tissue penetration of 
COVID-19 or other coronaviruses from the upper respiratory 
tract. 

Another potential challenge to tight junctional integrity 
of the upper airway is Porphyromonas gingivalis, an oral 
pathogen whose LPS has been found to downregulate 
occludin and claudin-4 [17]. Interestingly, this effect was 
manifested by P. Gingivalis LPS but not by P. Gingivalis in 
vitro. The prevalence of P. gingivalis has been estimated to 
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be 15% in children and approximately 50% in adults [18,19]. 
Dental prostheses also increase the risk for periodontitis 
[20]. P. gingivalis has been implicated as a potential pathogen 
in Alzheimer’s disease, suggesting that the bacteria may be 
more pathogenic at the older end of the age spectrum [21]. 
Through its interference with tight junction proteins such as 
occludin and claudin-4, P. gingivalis might serve to augment 
the invasiveness of COVID-19 and other coronaviruses from 
the upper airway. 

Periodontitis caused by P. gingivalis has been shown to 
respond to treatment by both azithromycin and bee venom 
[22-25], suggesting a prophylactic role for azithromycin, 
compounds derived from bee venom, or both, in suppression 
of P. gingivalis in patients at high risk for severe COVID-19 
infection. Azithromycin is bactericidal for P. gingivalis; it 
reduces P. gingivalis biofilms in vivo, and it has been shown 
to reduce pro-inflammatory cytokine and chemokine 
production induced by P. gingivalis LPS. It is possible that 
prophylaxis with azithromycin might increase the risk for 
Candida albicans; but such side effects could be controlled 
via concurrent use of probiotics. Bee venom has been found 
to inhibit proinflammatory cytokines induced by P. Gingivalis 
LPS via suppression of NF-kB and AP-1 signaling.

Azithromycin is already in use for treatment of COVID-19 
infection. Bee venom derivatives, on the other hand, have 
not yet been tested in this context. However, bee venom 
derivatives could be of potential use in the context of 
COVID-19, both on account of their anti-inflammatory 
properties and also on account of their antimicrobial 
properties [26,27]. Given that paraquat-induced toxic lung 
injury shares a number of characteristics in common with 
lung injury secondary to SARS CoV1, it is of interest that 
melittin, an active ingredient in bee venom, has been shown 
to attenuate paraquat-induced lung injury in mice [28-32]. 
Thus, bee venom compounds might be useful in prevention 
of long term fibrotic sequelae, if any, due to COVID-19 
infection or reactivation. 

Aside from advanced age, conditions known to increase 
risk for severe COVID-19 infection include diabetes mellitus, 
smoking, and chronic lung disease. These same conditions 
have been found to predispose to dysfunction of tight 
junctions. Smokers have decreased levels of claudins 1, 3, 
7, and 8; and in vitro studies have also implicated cigarette 
smoking in reduced expression of occludin, E-adherence, 
JAM-A, and ZO-1 [33]. Hyperglycemia alters the expression 
of ZO-1 and occludin, reduces TER, and is an independent 
risk factor for respiratory infections [34]. 

The host inflammatory immune response itself may 
contribute to barrier compromise. COVID-19 infected 
patients have been reported to have increased IL-6, increased 
TNF-alpha, and increased interferon-gamma [35], all of 
which have been shown to impair tight junctional function 
in a number of epithelial cell lines. In vitro and in intestinal 
mucosa, IFN-gamma downregulates or decreases subcellular 
localization of ZO-1; redirects claudin, occludin, and JAM-A 
away from cell-cell contact regions; and effects dysfunctional 
changes in tight-junction associated actin structures. TNF-
alpha is associated with rearrangement of epithelial tight 

junction-associated actin and downregulation of ZO-1 in 
vitro [10]. TNF-alpha is increased in diabetes mellitus and 
other hyper-inflammatory states [36]. 

Thus, the elderly, diabetics, smokers, and individuals 
with chronic lung disease (among others) are cohorts who 
might stand to gain from prophylaxis during the current 
COVID-19 pandemic. 

Proline-glycine-proline (PGP) and its connection to 
lung inflammation 

PGP is a matrikine that has been shown to accumulate 
in the context of acute severe pulmonary infection, as 
demonstrated in animal models of Haemophilus influenzae 
(Hib) pneumonia and Pneumococcal pneumonia [37]. On 
accumulation, PGP triggers the infiltration of lung tissue 
by neutrophils — similar to that reported for SARS CoV1 
infections.

PGP may accumulate in the context of non-infectious 
pulmonary disease, as well. The matrikine has been found 
to accumulate in the sputum of patients with chronic 
obstructive lung disease (COPD), with highest levels of PGP 
observed during exacerbations of COPD. PGP-associated 
exacerbations of COPD are attenuated by treatment with 
azithromycin [38]. PGP also appears to be detrimental to 
pulmonary endothelium, inducing changes that resemble 
ARDS [39]. The effects of azithromycin on ARDS have not 
been well characterized. 

While PGP has not yet been demonstrated in human 
coronavirus infection, given the extent of neutrophil 
accumulation in SARS CoV1 [28], it seems reasonable to 
presume that PGP likely plays a role in the pathogenesis 
of that disease. On the other hand, patients with first time 
COVID-19 infections do not appear to exhibit pulmonary 
neutrophilia to the extent that has been reported for 
SARS CoV1 [40,41]. Thus, response of first time COVID-19 
pulmonary infection to azithromycin is unlikely to relate to 
its action on PGP. 

PGP may be more relevant to reactivation of COVID-19 
disease: progressive neutrophilia has been observed 
primarily in patients with severe acute respiratory syndrome 
COVID-19 reactivation [42]. Thus, the observation that 
azithromycin reduces PGP levels suggests a potential role 
for azithromycin in post-recovery prophylaxis for high risk 
patients. 

Severe COVID-19 infection and the cytokine storm
The danger of COVID-19 is believed to relate in part to 

cytokine storm, an exaggerated release of inflammatory 
cytokines potentially leading to respiratory or to multi organ 
system failure. Compared to COVID-patients with milder 
presentations, COVID-19 infected patients in the intensive 
care unit (those with presumed cytokine storm have been 
observed to manifest higher levels of cytokines, including 
higher plasma levels of IL-2, IL-6, IL-7, IL-10, gCSF, IFN 
gamma, MAP1 alpha, and TNF alpha [43,44].

IL6 is an inflammatory cytokine implicated in cytokine 
storm: it is responsible for upregulation of both the Th1 
and Th2 pathways, with increased production of IL4, IL13, 
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antimicrobial and anti-inflammatory actions, as well. Since 
these proposed interventions involve protection of barrier 
function, they would likely be less effective once the virus 
has already invaded and replicated within a host to a 
significant degree. Presumably these interventions would 
be most effective in a prophylactic context.

Second, reactivation COVID-19 infection may involve the 
matrikine PGP or its derivatives, especially in individuals 
with chronic lung disease or other risk factors. PGP, a pro-
inflammatory compound that can worsen risk in individuals 
with COPD or respiratory associated sepsis, has been shown 
to be modulated by azithromycin in individuals with COPD. 
Thus, azithromycin holds promise as a prophylactic agent 
in COVID-19 post infection prophylaxis, especially in the 
context of COPD or other chronic lung disease. 

Third, the most serious cases of COVID-19 infection 
appear to involve cytokine storm, a potentially deadly 
complication. Azithromycin and bee products modulate 
the inflammatory response to a moderate degree, but such 
modulation is likely inadequate in the context of full-blown 
cytokine storm. Thus, these anti-inflammatory actions, too, 
would appear to be most effective in a prophylactic context. 

Since azithromycin is currently utilized for long term 
prophylaxis in other contexts, its adoption during the 
COVID-19 pandemic should be relatively easy to implement. 
Even though this strategy carries the risk of increased 
antibiotic resistance, the pay-off might be worthwhile in the 
context of the current pandemic. 

Bee derived products are a less familiar option, but one 
advantage of these products is that they do not carry the 
risk of increased antibiotic resistance. Further research is 
needed to isolate effective active ingredients from these 
products while limiting potential complications. 

Azithromycin and be derived products such as Brazilian 
Green Propolis might be expected to exert a potential 
prophylactic effect within a short period of time. In contrast, 
the cytokine modulating effects of bee venom on IL-10 might 
not be realized until one or more months of chronic exposure 
to the venom or to its active constituents. 

Given all of the above potential loci for intervention, it 
is proposed that azithromycin, bee derived products, or 
a combination of these be considered for prophylaxis in 
individuals at high risk for serious COVID-19 infection. 
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