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Abstract
Cannabidiol (CBD), a non-psychotropic phenolic terpene constituent 

of Cannabis sativa, was approved in 2018 by FDA in the USA 
(Epidiolex®) and, in 2019, by EMA in the European Union (Epidyolex®) 
as an adjunct for the treatment of certain forms of pediatric epilepsy. 
The mechanism(s) by which CBD exerts its antiepileptic effects is 
not known. There is also a paucity of data on the fate and biological 
activity of human metabolites of CBD. However, similarities have been 
noted between the anticonvulsant properties of the antiepileptic drug 
phenytoin (PHT) and CBD. Herein we describe the results of molecular 
modeling studies comparing the stereoelectronic properties of PHT 
with those of CBD and its carboxylic acid metabolite (7-COOH-CBD), and 
of 7-hydroxycannabidivarin. The similar electrostatic potential maps 
of PHT and the Phase I cannabinoid metabolites suggest analogous 
hydrogen bonding interactions at a potential common target site which 
involve the hydantoin moiety of PHT on the one hand and the polar 
groups of the Phase I metabolites on the other. Superposition of PHT 
and 7-COOH-CBD reveals similarities in the spatial arrangement of their 
respective polar and hydrophobic moieties. Furthermore, as shown by 
their perfect overlay, the 1-cyclohexenecarboxylic acid core of 7-COOH-
CBD mimics Δ2(E)-valproic acid, a non-teratogenic bioactive metabolite 
of the commonly used antiepileptic valproic acid. It is proposed that C–7 
oxidized phytocannabinoid metabolites are involved in the observed 
phenytoin-like anticonvulsant effects of the parent phytocannabinoid 
drugs.
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Introduction
Epilepsy is one of the world’s oldest recognized diseases. 

It is a life-shortening, chronic neurological disorder globally 
affecting around 50 million people, of which over 8 million 
are below the age of 19 years [1,2]. Epilepsy is characterized 
by partial or generalized spontaneous seizures which 
sometimes are accompanied by loss of consciousness, and 
control of bowel and bladder functions. Seizure episodes are 
repetitive and are a result of abnormal neuronal discharges 
in a group of brain cells.

Since the landmark discovery by Merritt and Putnam 
of the anticonvulsant effect of phenytoin (PHT; Figure 1) 
over 80 years ago [3], more than two dozen of clinically 
approved anti epileptic drugs (AEDs) have become available 
and several others are under development yet definitive 
treatment for epilepsy is still lacking. The currently used 
AEDs are known to act at one or more targets, which 
include voltage- and ligand-gated ion channels, GABA or 
glutamate transporters or receptors, and certain enzymes 
such as carbonic anhydrase [4–8]. While epileptic seizures 
can often be treated or prevented satisfactorily – and often 
affordably – by an appropriately selected AED alone or in 
combination, a significant number of patients are resistant 
to current pharmacotherapies; side effects from AEDs are 
also common. This is the case for valproic acid (VPA; Figure 
1) which is a frequently prescribed, broad-spectrum AED but 
may cause serious side effects including hepatotoxicity and 
teratogenicity; one of its bioactive metabolites, Δ2(E)-valproic 
acid (Δ2(E)-VPA; Figure 1), however, appears to be safer [9–
11]. Therefore, there is an urgent need for the development 
of new AEDs which are not only effective but also devoid of 
side effects especially upon chronic treatment.

One of the promising new antiepileptic drugs is 
cannabidiol (CBD, Figure 2A), a non-intoxicating constituent 
of Cannabis sativa L. CBD was first isolated in 1940 [12,13], 
and its structure determined in 1963 [14]. Being relatively 
safe CBD offers a wide range of therapeutic applications [15–
19]. CBD (Epidiolex®) was approved by the US FDA in June 
2018 and, as Epidyolex®, by the European Medicine Agency 
in September 2019 to treat seizures associated with Lennox-
Gastaut syndrome and Dravet syndrome, in conjunction with 
the antiepileptic clobazam [20,21]. In August 2020, Epidiolex 
received authorization also for the treatment of seizures 
associated with tuberous sclerosis complex in children [20]. 
Recently, another phytocannabinoid, cannabidivarin (CBDV; 

Figure 2A), the n-propyl homologue of CBD, has also been 
investigated in clinical trials [6,22].

Both Epidiolex and Epidyolex are prescription medicines 
used as oral solutions in daily doses up to 20 mg/kg. 
However, due to regulatory ambiguities in many countries 
various artisanal cannabis preparations, such as ‘CBD oils’, 
of mostly unknown quality and with unproven medical 
claims are being openly marketed [23,24].

The exact mechanism of anticonvulsant action of CBD 
is not known [25,26]. Prompted by the pharmacological 
and certain structural similarities between PHT, Δ2(E)-VPA, 
and primary oxidative metabolites of CBD and CBDV, we 
have compared by molecular modeling key stereoelectronic 
features of these substances. In this communication we 
survey relevant literature and report the results of our 
studies.

Phytocannabinoids as anticonvulsant agents
Preparations of various parts of hemp, C. sativa, 

have been used for religious, medicinal and recreational 
purposes for centuries. The first methodical studies on 
the therapeutic properties, including anti-seizure effects, 
of hemp preparations, in the form of tinctures, were 
carried out by O’Shaughnessy in the late 1830s [27]. By 
now, over 140 cannabinoids have been isolated from C. 
sativa [28]. Until recently, research has mainly focused 
on Δ9-tetrahydrocannabinol (THC; Figure 2A), the main 
psychoactive principle of cannabis [29,30]. However, THC 
appears to have paradoxical pro- and anticonvulsant effects 
which, along with its psychotropic properties, render 
this phytocannabinoid unsuitable as an AED [31–34]. 
Interestingly, 11-hydroxy-Δ9-THC, which is a short-lived 
psychotropic Phase I metabolite of THC, was more active as 
an anticonvulsant in mice with an earlier peak-effect than the 
parent drug suggesting its involvement in the anticonvulsant 
action of THC [35].

While the endocannabinoid system is known to be 
involved in the regulation of neuronal network excitability 
[36], the multimodal anticonvulsant effects of CBD are not 
directly mediated by cannabinoid receptors. In preclinical 
studies CBD has been shown to reduce neuronal hyper-
excitability through modulation of voltage- or ligand-
gated ion channels, by blocking orphan GPR55 receptor, 
the transient receptor potential vanilloid 1 channel, by 
inhibiting certain enzymes, as well as through modulation 
of adenosine mediated signalling, cytokine expression and 
TNFα release, and phosphatidylinositol 3-kinase signaling 
pathways [15,25,26,37,38]. Nevertheless, the precise 
mechanisms of action(s) of CBD are yet to be elucidated. 
In several animal models of epilepsy, the anticonvulsant 
properties of PHT and CBD have shown similarities in many, 
though not all, respects [15]. However, while both PHT and 
VPA affect voltage-gated sodium ion channels, the action of 
CBD at this latter target is equivocal [39–43].

Many drugs used in therapy are metabolically converted 
into active metabolites and inter individual variations in 
the formation and fate of such active metabolites may 

 

Figure 1: Structures of antiepileptic drugs discussed. Δ2(E)-Valproic acid is a 
bioactive metabolite of valproic acid.
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cause variability in the response to treatment of different 
individuals [44,45]. Information on the human metabolism 
of CBD is limited [46–48] and data on its pharmacokinetics 
have only been recently emerging [49–58]. CBD appears to 
have poor bioavailability: in general, therapeutic efficacy 
could only be reached with relatively high daily doses. A 
large portion of administered CBD is excreted intact or 
as its glucuronide. Phase I metabolism of CBD involves 
CYP450 isoenzymes: sequential oxidation of CBD at the 
7-C atom affords 7-hydroxy-CBD (7-OH-CBD) and 7-nor-1-
carboxy-CBD (7-COOH-CBD) (Figure 2B) as primary human 
metabolites. A recent study with adults given a single oral dose 
of 1500 mg CBD reported mean total (free + protein-bound) 
peak blood plasma concentrations of 292, 239 and 3060 
ng/mL for CBD, 7-OH-CBD and 7-COOH-CBD, respectively 
[49]. Additional, though less explored, biotransformations 
include oxidations at other single and/or multiple sites and 
truncation of the n-pentyl side chain and afford >30 oxidative 
metabolites [46–48]. Little attention has been paid to the 
biological activity of CBD metabolites [48]. Anticonvulsant 
effects of 7-OH-CBD and 7-hydroxycannabidivarin (7-OH-
CBDV; Figure 2B) against pentylenetetrazole-induced acute 
seizures in mice were claimed in a recent patent [59], while 
7-OH-CBD was reported to be more effective than CBD 
or 7-COOH-CBD in preventing MES-induced generalized 
seizures in the mouse [60].

The paucity of data on the anticonvulsant activity of 
CBD metabolites prompted us to examine in silico the 
structural similarities of some currently used AEDs and the 
two primary metabolites of CBD as well as of the related 
Phytocannabinoid 7-OH-CBDV.

Methods
Molecular modeling calculations were performed on 

laptop computers. Initial structural conformations of PHT, 
Δ2(E)-VPA, and (–)-(R,R)-CBD (the natural product), were 
manually built relying on data from earlier crystallographic 
and NMR experiments and/or molecular modeling studies. 

Electrostatic potential maps (EPMs) projected onto the 
electron density surface of the energy minimized molecules 
were calculated by ωB97X-D/6-31G* density functional 
method using the C-PCM continuum solvation model (water) 
by Spartan’16 software (Version 2.0.7, Wavefunction, Inc., 
Irvine, CA, USA). The surfaces were color-coded according 
to the potential with electron rich regions coloured red and 
electron poor regions coloured blue.

Superpositions were done using Discovery Studio 
Visualizer 4.1 (Accelrys/BIOVIA, San Diego, CA, USA) 
software. Once again, the molecules were manually built, 
their geometry optimized (CHARMm); alignments were done 
either by balanced (50:50) steric + electrostatic fields overlay 
or by three to five selected atom pair tethers according to 
command options in the Structure/Superimpose/Molecular 
Overlay menu of the software. 

For further details of methodology and additional 
references on previous structural and/or molecular 
modeling studies with PHT and VPA and their analogues as 
well as with CBD, see Supplementary material.

Results and Discussion
Despite their apparent structural differences, certain 

similarity between the stereoelectronic properties of CBD 
and PHT has been noted [61]: each drug contains two 
similarly oriented hydrophobic rings and, according to 
this proposal, two similarly positioned electron-donating 
functionalities, that is two phenolic hydroxyls in CBD and 
two carbonyl groups of the hydantoin ring in PHT. Phenytoin 
contains two geminal phenyl rings attached to a hydantoin 
core, which is capable of both accepting (C=O) and donating 
(NH) hydrogen bonds at the target site. PHT is semi-rigid 
and, in fact, is perfectly superimposable with the three-ring 
system-containing carbamazepine, an AED also targeting the 
sodium ion channel [62–64].

We have recently suggested that metabolites of CBD 
may contribute to or even responsible for some of the 

 

Figure 2. Structures of phytocannabinoids (A) and some of their main metabolites (B).
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pharmacological properties of the parent phytocannabinoid 
in vivo [48]. We now have tested by molecular modeling 
the hypothesis that C–7-oxidized metabolites of CBD 
are involved in its observed phenytoin-like effects. This 
hypothesis has been inspired by the reported bioisosterism 
[65–67] of the hydantoin ring, present in PHT, and the 
carboxylic acid functionality, present in dominant human 
metabolites of CBD. The early observation in cats that 
diphenylacetic acid possessed anticonvulsant activity 
similar to PHT [68] also indicates that carboxyl groups 
could function as hydantoin equivalents. Herein we report 
the results of molecular modeling studies comparing the 
electrostatic and conformational features of CBD and main 
phytocannabinoid metabolites with those of PHT. We also 
demonstrate the recently noted [48] structural similarity 
of the branched 2-alkenecarboxylic acid Δ2(E)-VPA (Figure 
1) and the 1-cyclohexenecarboxylic acid moiety of 7-COOH-
CBD.

There have been several computational approaches to 
understand the mechanism of antiepileptic action of PHT 
and VPA and their analogues but none for CBD (see, however, 
[43]). For PHT, CoMFA studies have revealed that one of the 
hydantoin-attached phenyl rings can be replaced by alkyl 
groups with a 6–7 carbon chain length being optimal for 
binding to voltage-gated sodium ion channels in vitro and for 
anticonvulsant activity in a mouse model of epilepsy [69,70]. 
For example, replacement of one of the phenyl groups by a 
cyclohexyl ring provided a sodium ion channel blocker with 
respectable activity: IC50 = 58 ΔM for the racemic cyclohexyl 
analogue versus IC50 = 40 μM for phenytoin [69]. Relevant 
bioactivity data for the known [71] 5-cyclohexen-1-yl PHT 
analogue, which may be considered a simplified CBD-type 
compound, are lacking. Interestingly, 5-(o-hydroxyphenyl)
hydantoin PHT analogues were reported to have 
anticonvulsant activity in the mouse [72]. Pharmacophore 
studies on the flexible VPA and its amides acting as PHT-like 
anticonvulsants though scarce established the importance 
of electrostatic interactions involving their polar head-
group and the requirement of at least one lipophilic moiety 
attached to it [62,63,73].

We have hypothesized that the 7-OH- or 7-COOH 
moieties of primary CBD metabolites mimic the hydantoin 
ring of PHT. Though the electrostatic properties of these 
functionalities differ in terms of acidity, there is similarity in 
terms of hydrogen bonding ability: both the PHT-hydantoin 
moiety (pKa = 8.31 [74,75]), either as a lactam or as its 
lactim tautomer [76], and the carboxylic acid of the CBD 
metabolite are capable of forming multiple hydrogen bonds. 
The electrostatic similarity of Δ2(E)-VPA and of the polar 
head group of 7-COOH-CBD is obvious. The pKa values for 
VPA and its α,β-unsaturated metabolite are 4.95 and 4.36, 
respectively [77]; relevant data are not available for the 
phytocannabinoid metabolites, however, the unsubstituted 
α,β-unsaturated cyclohexenecarboxylic acid, present as a 
core fragment in 7-COOH-CBD, has a pKa of 3.88 [78]. The 
phenolic groups of the resorcinol moiety as well as the non-
acidic 7-hydroxylated side chain of the metabolites may also 
participate in hydrogen bonding interactions.

To shed light on the structural relatedness of PHT and 

the cannabinoids, various alignments have been explored in 
silico. (A review on unrelated molecular modeling studies on 
the interaction of CBD and various other pharmacological 
protein targets has recently been published [79]; see 
also [43].) Based on the known pharmacological and the 
observed spatial similarities between PHT and CBD on 
one hand, and on the reported hydantoin–carboxylic acid 
bioisosterism on the other, we compared by molecular 
modeling the stereoelectronic properties of PHT, CBD and 
related cannabinoid metabolites. We note that the energy-
minimized structures of the molecules could not be perfectly 
overlaid but the relatively low rotational barrier about the 
respective C(sp2)–C(sp3) pivot bonds, which connect the two 
phenyl groups and the hydantoin ring of PHT [64,80,81], and 
the resorcinol and cyclohexenyl moieties of the cannabinoids 
[61,82,83], render the conformation of each drug relatively 
flexible.

First, we examined the spatial relation of PHT and CBD 
as proposed earlier [61]. The original study pointed out 
the presence of two freely rotatable hydrophobic rings 
in both PHT and CBD as well as the “similar orientations 
and positions of the[ir] two electron-rich groups”; no 
superposition was, however, attempted. In our hand, 
examining various overlays of the two drugs according to 
this early proposal satisfactory alignment was obtained only 
by tethering: (1) the two carbonyl oxygens of PHT to the two 
resorcinol oxygens of CBD, and (2) the hydantoin C-5 atom 
of PHT to the cyclohexenyl C-3 atom of CBD; this alignment 
positioned both phenyl rings of PHT over the limonenyl 
moiety of CBD (Figure 3A). However, as seen in figure 3B, 
much better overall alignment was obtained by tethering 
the respective carbonyl groups of the isosteric hydantoin 

 
Figure 3: Alternative superpositions of PHT (gold carbon atoms) and 
CBD (green carbon atoms) by tethering the hydantoin C-5 atom and the 
cyclohexenyl C-3 atom, and (A) by tethering the two carbonyl and resorcinol 
oxygens of PHT and CBD, respectively, according to Ref. 61; or (B) by 
tethering the C-2 carbonyl group of PHT and the carbonyl group of 7-COOH-
CBD. Hydrogens are shown on heteroatoms only. Two views (left and right) 
are rotated by 90° about the vertical axis.
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and carboxylic moieties of PHT and 7-COOH-CBD instead of 
the above hydantoin–resorcinol tethering. For comparisons 
of the electrostatic potential surfaces of PHT and selected 
cannabinoid metabolites, this latter alignment was used.

Figure 4 shows the EPMs projected onto the electron 
density surface of PHT, CBD, 7-COOH-CBD and 7-OH-
CBDV. As seen, the EPMs of PHT and CBD show significant 
differences. For the weak acid PHT, the hydantoin ring, 
which would correspond to the branched allylic system 
bearing the 7-CH3 of CBD, is able to participate in multiple 
hydrogen bond interactions: the exposed C=O groups, as the 
most electron-rich regions (red), may act as hydrogen bond 
acceptors while the amide/imide hydrogen atoms (blue) are 
available as hydrogen bond donors. In CBD, the area around 
the 7-CH3 group bears essentially ‘zero potential’ (green); 
the lone pairs of electrons (electron rich regions; red) of 
the resorcinol oxygens point toward limonenyl moiety of 
CBD and appear to be buried between the two rings thus 
likely inaccessible for hydrogen bonding as acceptors; 
consequently, in the minimum-energy conformation the two 
phenolic hydrogens (blue) point away from the limonenyl 
moiety and may act as hydrogen bond donors only. Compared 
to the sterically more compact PHT, the hydrophobic pentyl 
side chain of CBD could occupy an additional hydrophobic 
cavity of the target site and may facilitate membrane 
penetration also. However, the remarkable similarities in 
the EPMs of the polar functionalities of PHT and 7-COOH-
CBD are readily recognizable: the hydantoin system and the 
carboxylic acid moiety show similar electron distribution 
(compare the respective red and blue regions in figure 4) 
which supports our hypothesis on the hydantoin–carboxylic 
acid bioisosterism for this pair of compounds. Likewise, the 
EPMs of PHT and 7-OH-CBDV also show a certain degree of 
similarity around the polar functionalities (Figure 4); the 

7-OH group of the cannabinoid metabolite can be involved 
in hydrogen bonding interactions though not as extensively 
as a carboxylic acid species.

Insufficient structure-activity relationship (SAR) data 
preclude the formulation of a rigorous pharmacophore 
model for the anticonvulsant cannabinoids. Notwithstanding, 
the present study have revealed steric and electrostatic 
similarities between the cannabinoid metabolites and 
PHT which suggest a common pharmacophore orientation 
shown in figure 3B. Accordingly: (1) similar to the hydantoin 
ring in PHT, the exposed 7-OH or 7-COOH polar headgroups 
of the cannabinoid metabolites function as hydrogen bond 
donors and/or acceptors; and (2) similar to the spatial 
arrangement of the two phenyl rings in PHT, the positioning 
of the limonenyl and the substituted-aryl groups of the 
cannabinoids facilitate hydrophobic interactions, which are 
likely strengthened by hydrogen bonds involving the phenolic 
hydroxyl(s) oriented to the target site. The importance of 
at least one free phenolic group in the antiseizure effect of 
CBD or metabolites cannot be neglected: upon sequential 
O-methylation of the resorcinol moiety the activity gradually 
diminishes [84].

Although not related to anticonvulsant effects, it is 
interesting to note that 5,5-diphenyl (thio)hydantoins 
[85,86] alkylated at the imidic nitrogen atom have been 
found to be CB1 receptor ligands, typically antagonists; no 
data for N-unsubstituted hydantoins, including PHT, have 
been reported.

We have also examined the similarity of 7-COOH-
CBD and the anticonvulsant drug metabolite Δ2(E)-VPA by 
superimposing their minimum-energy structures (Figure 5). 
Not surprisingly, there is an excellent overlap between the 
respective α,β-unsaturated alkenoic and cycloalkenoic acid 

 
Figure 4: Electrostatic potential maps of PHT, CBD, 7-COOH-CBD and 7-OH-CBDV in their minimum energy conformations.
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fragments of Δ2(E)-VPA and 7-COOH-CBD. As noted earlier, 
diphenylacetic acid, which is an aromatic analogue of VPA 
and Δ2(E)-VPA as well as a carboxylic acid bioisostere of PHT, 
was shown to be anticonvulsant in cats decades ago [68]. It 
is of note, that a molecular model-based pharmacophore for 
the anticonvulsant potency and sodium ion channel binding 
efficiency has been proposed for PHT, carbamazepine, as 
well as for valproic acid and its amide derivatives [62,63].

Finally, the lack of stereoselectivity observed in mice for 
the anticonvulsant effect of natural (–)-(R,R)-CBD and its 
synthetic (+)-(S,S)-enantiomer [87–89] might be explained 
by a remarkably close overlap of the two enantiomeric 
molecules when superimposed (Figure 6). Reasonably, the 
cyclohexene ring assumes a half-chair conformation placing 
the bulky resorcinol moiety into the energetically favourable 
pseudo-equatorial position in both enantiomers, and this 
results in their similar overall shape. Oxidative metabolites 
of CBD enantiomers may also attain similar shapes, which 
are further tuned by electrostatic interactions with the target 
site involved in their anticonvulsant effects. While the effects 
of the trans-CBD enantiomers and their 7-OH and 7-COOH 
metabolites on various components of the endocannabinoid 
system and other targets have been studied [90–94], there 
are no pharmacological data on cis-CBD, that is the (R,S)- 
or (S,R)-CBD isomers [95–97]. The impact of chirality on 

sodium ion channel pore binding of PHT-related 5-(cyclo)
alkyl-5-phenylhydantoins has been discussed [64].

Conclusion
Multiple lines of evidence indicate similarities between 

the anticonvulsant effects of PHT – and to some extent VPA 
– and CBD suggesting common mechanism of action. The 
molecular modeling studies presented here have revealed 
stereoelectronic similarities between PHT and the C–7-
oxidized metabolites of CBD and CBDV. The lack of information 
on the precise molecular targets and on the structural 
requirements responsible for the anticonvulsant activity of 
CBD precludes a comparative SAR study of established AEDs 
and of CBD or its metabolites thus prevents the formulation of 
a valid pharmacophore model. Our hypothesis can be tested, 
for example, by applying the information obtained during 
the plethora of SAR studies of PHT and related AEDs to CBD-
type substances. It would also be of interest to synthesize 
and test phenytoin–CBD hybrid molecules. Importantly, 
however, further pharmacological studies in vitro with 7-OH 
and 7-COOH metabolites of CBD and CBDV are required 
to establish the exact mechanism(s) responsible for their 
biological activity in general and their involvement in the 
anticonvulsant effect of cannabis-containing preparations 
in particular. In addition, the potential involvement of CBD 
metabolites in the anticonvulsant effect of the parent drug 
necessitates further studies on drug-drug interactions, in 
particular with medicines and xenobiotics which induce the 
formation of the primary oxidative metabolites discussed in 
this publication.
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