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Abstract
Introduction: Cancer development and immune escape involve 

DNA methylation, copy number variation and other molecular events. 
However, there are remarkably few studies integrating multi-omics 
genetic profile in endometrial cancer (EC). We aimed to develop a 
multi-omics signature for prognosis and immunotherapy response 
of endometrial carcinoma. Material and methods: We analysed the 
gene expression, somatic mutation, copy number alteration and DNA 
methylation data of EC from UCSC Xena database. Then, a multi-omics 
signature was constructed by machine learning model, ROC curve 
comparing its prognostic power with traditional clinical features. Two 
computational strategies were utilized to estimate the signature’s 
performance in predicting immunotherapy response in EC. Further 
validation focused on the most frequently mutant molecule, ARID1A, in 
the signature. Association of ARID1A with survival, MSI (Microsatellite-
instability), immune checkpoints, TIL (tumor infiltrating lymphocyte) 
and downstream immune pathways were explored. Result: The signature 
consisted of 22 multi-omics molecules, showing excellent prognostic 
performance in predicting the overall survival of patients with EC (AUC= 
0.788). After stratifying patients into high and low risk group according 
to the signature’s median value, low risk patients displayed a greater 
possibility to response to immunotherapy. Further validation on ARID1A 
suggested it could induce immune checkpoints up-regulation, promote 
interferon response pathway and interact with Treg (regulatory T cell) 
to facilitate immune activation in EC. Conclusion: A novel multi-omics 
prognostic signature of EC was identified and validated in this study, 
which could guide clinical management of EC and benefit personalized 
immunotherapy.

Keywords: Prognosis, Immunotherapy, Endometrial Carcinoma, 
ARID1A, Regulatory T cell.

Abbreviation: EC: Endometrial Carcinoma; TCGA-UCEC: The Cancer 
Genome Atlas-Uterine Corpus Endometrial Carcinoma cohort; ICB: 
Immune Checkpoint Blockade; CNV: Copy Number Variation; MSI: 
Microsatellite Instability; MSI: Microsatellite-instability; TIL: Tumor 
Infiltrating Lymphocyte; DEG: Differentially Expressed Genes; OS: 
Overall Survival; PFS: Progression Free Survival.
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Introduction
As the most prevalent gynecologic malignancy, 

endometrial carcinoma (EC) is one of the leading cause 
of female mortality worldwide [1]. The introduction 
of ICB (Immune Checkpoint Blockade) has achieved 
favorable clinical effect in patients with end-stage EC 
where chemotherapy regimen has little progression [2,3]. 
However, more than 80% of patients are non-responder, or 
NDB (no durable clinical benefit), to immunotherapy and the 
underlying factors resulting in heterogeneous prognoses are 
poorly understood. In fact, cancer development and immune 
response are determined by multiple factors, including 
genomic mutation, DNA methylation and copy number 
variance, et al [4,5]. Therefore, analysis incorporating multi-
omics data is urgently needed for EC management. 

We utilized meta-dimensional strategies to seek 
genetically susceptible molecules from gene expression, 
somatic mutation, copy number alteration and DNA 
methylation data of EC, aiming to develop a multi-omics 
signature for prognosis and immunotherapy response of EC. 
The signature was built by machine learning model and its 
efficiency was compared with traditional clinical features. 
Two computational approach were also deployed to estimate 
the signature’s performance in predicting immunotherapy 
response. Further validation focused on the most frequently 
mutant molecule of the signature: ARID1A. Association 
of ARID1A with survival, MSI (Microsatellite-instability), 
immune checkpoints, TIL (tumor infiltrating lymphocyte) 
and downstream immune pathways were explored and 
potential mechanisms were given.

The present study constructed a novel multi-omics 
prognostic signature for prognosis and immunotherapy 
response of EC, which could guide clinical management of 
EC and benefit personalized immunotherapy.

Material and Methods
Data acquisition

Multi-omics data of EC (endometrial carcinoma) were 
acquired from TCGA-UCEC cohort (The Cancer Genome Atlas 
Endometrial Cancer, 543 tumor and 35 normal samples) at 
UCSC Xena website (https://xenabrowser.net/datapages/), 
including datasets of Copy Number Variation (CNV), DNA 
methylation (450k), RNA-seq of raw counts, Somatic 
Mutation (MuTect2 method) and survival data. In parallel, 
gene sets of 482 mutated genes with alteration frequency 
> 5% and 380 copy number varied genes with alteration 
frequency > 1% in EC were retrieved from Cbioportal (www.
cbioportal.org) and OncoKB database (http://oncokb.org).

Differential expression and function enrichment 
anlaysis

To reveal the molecules of real value for EC in these 
multi-omics datasets, a series of R packages were used for 
screening, such as limma package to seek out differentially 
expressed genes between 543 tumors and 35 normal 
samples with |log2 Fold Change (FC)| > 1.5 and P value < 
0.05 as the threshold, as well as ChAMP package to identify 
differential methylation loci with |log2 Fold Change (FC)| > 
0.5 and P value < 10-15 [6,7]. 

Heatmap and volcano plot were used to display the 457 
differentially expressed genes (DEG) and 746 CpG sites 
between tumor and normal samples, with GO (http://wego.
genomics.org.cn) and KEGG (http://wego.genomics.org.cn) 
enrichment analysis to dissect their biological function and 
related signaling pathways. Meanwhile, Oncoprint-plot was 
employed to present the top 30 mutated and copy number 
varied genes in EC. 

Construction of the multi-omics prognostic 
signature for EC

Subsequent filtration of the 457 significant DEGs, 746 
differential methlytion loci, 482 mutated and 380 copy 
number varied genes were completed by LASSO penalized 
Cox regression with overall survival as the dependent 
variable. At last, 22 molecules were adopted for modeling. 
Next, Kaplan-Meier curves were depicted to show the 
prognostic power of the 22-gene-signature where risk score 
of each patient was calculated with the following formula:n

iΣ  Coefi*Xi (Coefi: cox regression coefficient, Xi: expression 
value of corresponding molecule, n=22). Following that, 
patients were stratified into high and low-risk group 
according to the median risk score. ROC (receiver operator 
characteristic) curve and multivariate Cox regression 
were also used to evaluate its prognostic performance and 
independent prognostic efficiency.

Relationship of the prognostic signature with 
immunotherapy response in EC

To assess the relationship of the signature with 
immunotherapy, algorithms of TIDE (tumor immune 
dysfunction and exclusion) and ImmuneCellAI were applied 
to predict patientis’ response to ICB (immune checkpoint 
blockade) treatment [8,9]. Hundred-percent bar-chart and 
Heatmap were used to display the response difference to ICB 
between high and low-risk groups.

Validation on ARID1A for its prognostic ability and 
association with immunotherapy

Further validation focused on the most frequently mutant 
molecule in the signature: ARID1A. Association of ARID1A 
mutation with patients’ survival, MSI (Microsatellite-
instability), immune checkpoints or T cell exhaustion markers 
(LAG3, SIGLEC15, CTLA4, HAVCR2 (TIM3), PDCD1LG2 (PD-
L2), CD274 (PD-L1), PDCD1 (PD1), TIGIT) and downstream 
immune pathways were explored. In addition, impact of 
ARID1A mutation on the abundances of 22 tumor infiltrating 
immune cells were assessed by CIBERSORT algorithm.

Underlying mechanism from ARID1A mutation to 
cancer immune activation

To identify the Underlying mechanism from ARID1A 
mutation to cancer immune activation, a ternary interaction 
network was constructed. Firstly, differential expression 
analysis was carried out between 235 ARID1A-mut samples 
and 291 ARID1A-wild tumor samples of UCEC cohort, 25 
up-regulated and 46 down-regulated DEGs obtained. By 
performing correlation analyses between the71 DEGs, 
abundances of 22 immune cells computed by CIBERSORT 
and enrichment scores of 29 cancer specialized immune 

https://xenabrowser.net/datapages/
http://www.cbioportal.org
http://www.cbioportal.org
http://oncokb.org
http://wego.genomics.org.cn
http://wego.genomics.org.cn
http://wego.genomics.org.cn
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pathways quantified by GSVA, the interaction pair of DEG-
Immune Cell and DEG-Immune Pathway with correlation 
coefficient > 0.3 were screened out. Further regulating 
network of 71 DEG, 22 immune cells and 29 immune 
pathways was completed by Cytoscape software (https://
cytoscape.org/) [10,11].

Statistic and software
Data processing and all analyses were accomplished 

by R 4.0.4. (Package: limma, ggplot2, survminer, ChAMP, 
ggcorrplot, GSVA, CIBERSORTx and so on). Chi-square 
test was used for counting data. Wilcox or Kruskal-Wallis 
test were applied for comparisons between groups, while 
Pearson and Spearman rank correlation were adopted to 
estimate the statistical correlation of parametric or non-
parametric variables. Two-sided P < 0.05 was considered as 
significant threshold for all statistical tests.

Results
Differential expression analysis and enrichment 
analysis

Study protocol was illustrated in figure 1 while table 1 
summarized the demographic feature of TCGA-UCEC cohort. 

457 differentially expressed genes (DEG) and 746 
differential CpG sites were shown in heat map and volcano-
plot (Figure 2A, 2B). Those DEGs mainly enriched in 
thermogenesis and neutrophil activation involved in immune 
response pathways (Figure 2C, 2D). The top 30 mutant and 
copy number varied genes were displayed in oncoprint-plot 
(Figure 2E, 2F).

Construction of the multi-omics prognostic 
signature

22 molecules stood out in LASSO-Cox analysis after 

 

Figure 1: Study protocol. 

https://cytoscape.org/
https://cytoscape.org/
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Figure 2: Differential expression and function enrichment anlaysis.
A: Heatmap of 457 DEGs (differentially expressed genes) between tumor and normal samples. B: Volcano-plot of 746 differential CpG sites, 3 most up-
regulated sites marked. C: Bimodal distribution of Beta value for methylation among tumor and normal samples. D: KEGG and GO enrichment analysis. 
E: Top 30 mutant genes in EC. F: TOP 30 genes with copy number variance. (UP: up-regulated DEGs; DOWN: down-regulated DEGs, KEGG: Kyoto 
Encyclopedia of Genes and Genomes; GO: Gene Ontology).
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ARID1A-mut ARID1A-wild P-value
SAMPLE 233 288

AGE 61.49 ± 10.66 65.89 ± 11.02 <0.001
BMI 34.11 ± 15.06 33.54 ± 9.28 0.608

STAGE 0.009
Stage I 164 (70.39%) 159 (55.21%)
Stage II 21 (9.02%) 29 (10.07%)
Stage III 44 (18.87%) 77 (26.73%)
Stage IV 4 (1.72%) 23 (7.99%)

DIABETES 0.76
NO 120 (74.07%) 138 (72.63%)
YES 42 (25.93%) 52 (27.37%)

HYPERTENSION 0.992
NO 75 (42.37%) 84 (42.42%)
YES 102 (57.63%) 114 (57.58%)

GRADE 0.025
G1 52 (22.32%) 44 (15.28%)
G2 58 (24.89%) 57 (19.79%)
G3 121 (51.93%) 180 (62.50%)

High Grade 2 (0.86%) 7 (2.43%)
STATUS <0.001

Alive 213 (91.42%) 223 (77.43%)
Dead 20 (8.58%) 65 (22.57%)

Table 1: Clinical feature of TCGA-UCEC cohort.

Molecules Annotation Coefficient

ACVR1 (Activin A Receptor Type 1) Mutation -0.31351085

ARID1A (AT-Rich Interaction Domain 1A) Mutation -0.230538257

ATM (Ataxia Telangiectasia Mutated) Mutation -0.095420173

BIRC6 (Baculoviral IAP Repeat Containing 6) Mutation -0.13931703

ERBB3 (Erb-B2 Receptor Tyrosine Kinase 3) Mutation -0.167684278

HOXA11 (Homeobox A11) Mutation 0.340669897

POLE (DNA Polymerase Epsilon) Mutation -0.18491545

POLQ (DNA Polymerase Theta) Mutation -0.035077258

SPOP (Speckle Type BTB/POZ Protein) Mutation -0.094758819

GINS4 (SLD5,GINS Complex Subunit 4) CNV 0.058592508

GORAB (Golgin, RAB6 Interacting) CNV 0.074299734

GSTM1 (Glutathione S-Transferase Mu 1) CNV 0.172758754

KCNMB3 (Potassium Calcium-Activated Channel Subfamily M Regulatory Beta Subunit 3) CNV -0.111711137

PTPN22 (Protein Tyrosine Phosphatase Non-Receptor Type 22) DEG -0.074886487

CDH18 (Cadherin 18) DEG 0.197447688

KCNK3 (Potassium Two Pore Domain Channel Subfamily K Member 3) DEG 0.047114247

PCSK1 (Proprotein Convertase Subtilisin/Kexin Type 1) DEG 0.114882922

KCNJ12 (Potassium Inwardly Rectifying Channel Subfamily J Member 12) DEG 0.131411471

NCMAP (Non-Compact Myelin Associated Protein) DEG -0.024703756

cg07792478 CpG of MIR124-2 0.327359364

cg13703871 CpG of ZNF177 0.583394392

cg14398860 CpG of INPP5A 0.133967149

(CNV: Copy number variance; DEG: Differentially expressed genes).

Table 2: 22 key molecules identified by LASSO-Cox regression.
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shrinking most factors’ coefficient towards zero (Figure 3A, 
3B), including 9 genes with somatic mutation, 4 with copy 
number variance, 3 with differential CpG sites and 6 DEGs, 
their regression coefficients shown in table 2. Risk score of 
each patient was illustrated which well stratified patients 
into two groups, according to the median value, with huge 
discrepancy in survival probability (Figure 3C, 3D). ROC curve 
showed a better prognostic performance of the signature 
than traditional clinical features, such as pathological stage 
and tumor grade (Figure 3E). Subsequent univariate and 
multivariate Cox analyses proved the signature can be an 
independent factor for prognosis of EC (Figure 3F, 3G). 

Relationship of the prognostic signature with 
immunotherapy response

In light of immunotherapy, no matter TIDE or 
ImmuneCellAI algorithm, more patients in the were seen to 
be responder of ICB treatment (anti-PD-1 or anti-CTLA4) in 
the low-risk group than people in the high-risk group (71 
vs 46 and 130 vs 74 respectively, P< 0.001) with significant 
statistic difference (Figure 4A, 4B). 

Validation on ARID1A for its prognostic ability and 
association with immunotherapy

As the most frequently mutant gene in EC (Figure 4C, 
4D), ARID1A can well stratify patients into two groups with 
noticeable survival difference in UCEC cohort (Figure 4E, 
4F), though not influencing its mRNA transcription. ARID1A 
mutation was also associated with MSI-H status, higher 
level of immune checkpoints expression and TIL (tumor 
infiltrating lymphocyte) (Figure 5A, 5B, 5C). 

ARID1A may interact with Treg and promote 
Type-I-IFN-Response pathway to facilitate tumor 
immune activation in EC

Of the 71 DEGs between ARID1A-mut and ARID1A-wild 
tumor samples, 25 were up-regulated and 46 were down-
regulated (Figure 6A). They were mainly enriched into p53 
signaling, mTOR, DNA damage and stem cell development 
signaling pathways (Figure 6B). These DEGs also exhibited 
extensive association with 22 immune cells and 29 immune 
pathways in the correlation heatmap (Figure 6C, 6D). Within 
the final interaction network, Type-I-IFN-Response pathway 
and T cell regulatory showed major connection with DEGs, 
indicating that ARID1A may interact with Treg and promote 
Type-I-IFN-Response pathway to facilitate tumor immune 
response in EC (Figure 6E).

Discussion 
The present study constructed a novel multi-omics 

prognostic signature for prognosis and immunotherapy 
response of EC, which could guide clinical management of 
EC and benefit personalized immunotherapy. Following 
validation indicated ARID1A mutation may interact with 
Treg and promote Type-I-IFN-Response pathway to facilitate 
tumor immune response and better survival outcomes for 
EC patients.

ARID1A (BAF250a), though connected with a superior 
outcome of ICB treatment in several cancer types, has 

rarely been reported for its prognostic and predictive 
ability in the immunotherapy cohort of EC [12-14]. As a 
subunit of the SWI/SNF chromatin-remodeling complex, it 
harbors an N-terminal DNA binding ARID (~110 residues) 
and a C-terminal folded region (~250 residues), which are 
essential to increase chromatin accessibility, binding to the 
promoter regions and facilitating transcription of multiple 
genes [15,16]. In consistent, majority of DEGs were found to 
be down-regulated, other than up-regulated, in the ARID1A-
mut group in our study (46 vs 25), partly accounting for the 
tumor suppression effect of ARID1A deficiency in a wide 
range of cancer types [17-19]. These results were in line 
with the advantageous role of ARID1A mutation for patients’ 
survival outcome in TCGA-UCEC in this study.

In fact, association between ARID1A mutation and 
favorable ICB treatment outcome in other cancer types is 
not scarce. Shen J et al. has reported a greater proportion 
of ICB response in ARID1A-deficient group than ARID1A-
wild group in ovarian cancer mouse models [20]. Similar 
result was also observed in two Melanoma cohorts (42.86 
% responder versus 25.81 % non-responder, and 100 % 
responder versus 51.43 % non-responder respectively) 
[21-23]. In addition, favorable survival outcome in ARID1A 
mutant patients when receiving ICB treatment was also 
revealed in a pan-cancer study, but merely 10 EC samples 
with ARID1A mutation were included, not sufficient to 
demonstrate the survival difference [12].

Elsewhere, ARID1A mutation was seen to be involved 
in Type I IFN (IFN-α/β) response pathway and regulatory 
T cell to interact with EC development, partly accounting 
for its advantageous role in many kinds of cancer. Previous 
study has already linked IFN I and IFN II pathway to ICB 
therapy outcome in multiple cancers and there was data 
also connecting ARID1A mutation with IFN I and II response 
pathway activity [13,24,25]. Apart from IFN pathways, 
in agreement with our findings, ARID1A mutation could 
also result in higher level of PD-1, MSI, T cell infiltration 
to promote cancer immunity, potentiating favorable ICB 
treatment response [26-28].

Conclusion and Limitation 
The present study constructed a novel multi-omics 

prognostic signature for prognosis and immunotherapy 
response of EC, which could guide clinical management of 
EC and benefit personalized immunotherapy. Following 
validation indicated ARID1A mutation may interact with 
Treg and promote Type-I-IFN-Response pathway to facilitate 
tumor immune response and better survival outcomes for 
EC patients.

Given the inherent fault of bioinformatics analysis—
lacking of convincing data from reality, the conclusion 
of this study may be constrained. Further multi-centric 
clinical studies and experiments on cell and animal level 
are warranted to validate the results under different 
circumstances.
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Figure 3: Construction and evaluation of the prognostic signature. 
A: Most factors’ coefficients were penalized toward zero by LASSO regression. B: 22 variables were screened out with a minimal partial likelihood deviance. 
C: Patients’ survival status, ranking by their risk score. D: Survival analysis between high-risk and low-risk group. E: Risk score outweights common clinical 
features in predicting patients’ survival with higher AUC of 0.788. F,G: Univariate and multivariate Cox regression demonstrated the prognostic signature can 
be an independent prognostic factor. (AUC: Area under the curve; BMI: Body mass index).
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Figure 4: Validation on ARID1A’s ability to predict patients’ survival outcome.
A, B: Difference of immunotherapy response rate between high-risk and low-risk group, predicted by TIDE and ImmuneCellAI algorithms respectively. 
C: Alteration spectrum of 9 mutant and 4 copy number varied genes screened above. D: Mutation sites of ARID1A in EC. E: There weren’t difference of 
ARID1A mRNA expression between ARID1A mutant and wild groups. F: ARID1A mutant group showed a better survival outcome in UCEC (Uterine 
Corpus Endometrial Carcinoma) cohort. (ns: not significant; response & non-response: patient response to immunotherapy or vice versa; ARID1A-mut & 
ARID1A-wild: group with ARID1A mutation or vise versa).
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Figure 5: Effect of ARID1A mutation on MSI (Microsatellite instability), 8 immune checkpoints and 26 immune cells in EC (endometrial carcinoma).
A: ARID1A mutant group showed higher proportion of MSI-H than wild group in EC. B: ARID1A mutant group displayed higher level of PDCD1, LAG3 and 
TIGIT than wild group in EC. C: ARID1A mutant group exhibited higher infiltration of CD8+ T cell than wild group in EC. (MSI-H: Microsatellite-instability-
high; MSS: Microsatellite stability; *: P< 0.05; **: P< 0.01; ***: P< 0.001).
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Figure 6: ARID1A mutation may interact with Treg and promote Type-I-IFN-Response pathway to facilitate tumor immune response in EC (Endometrial 
Cancer).
A: 71 DEGs (differentially expressed genes), 25 up-regulated and 46 down-regulated, between ARID1A mutant and wild group in UCEC (Uterine Corpus 
Endometrial Carcinoma) cohort. B: KEGG and GO enrichment analysis of the 71 DEGs. C, D: correlation between 25 up-regulated genes/ 46 down-regulated 
genes and abundances of 26 immune cells respectively. E: Regulating network between immune pathways (purple), tumor infiltrating cells (red) and DEGs 
(green). (UCEC: The Cancer Genome Atlas-Uterine Corpus Endometrial Carcinoma cohort; FDR: False Discovery Rate; KEGG: Kyoto Encyclopedia of 
Genes and Genomes; GO: Gene Ontology).
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