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Abstract
Objective: The lung cancer has become the most lethal cause of 

cancer-related death in China and is responsible for more than 1 million 
deaths all over the world every year, especially non-small cell lung cancer 
(NSCLC). Although great advance in pharmaceutical therapies for lung 
cancer patients, the overall survival is still poor. It is necessary to find out 
the effective biomarkers in order to improve and predict the prognosis 
of lung cancer patients. The integrated bioinformatical analysis, as a 
useful tool to dig up the valuable clues, can be applied to search new 
effective therapeutic targets. Methods: In this work, we utilized four 
NSCLC datasets (GSE18842, GSE31210, GSE33532 and GSE101929) 
from Gene Expression Omnibus (GEO) to analyze. We totally found 
that there were 162 differentially expressed genes (DEGs) in these four 
datasets, including 41 up-regulated genes and 121 down-regulated 
genes in NSCLC tissues. The analysis of gene ontology (GO) enrichment 
and Kyoto encyclopedia of genes and genomes (KEGG) pathway was 
done by Database for Annotation, Visualization and Integrated Discovery 
(DAVID) software. Then, we identified 10 core oncogenes by constructing 
protein-protein interaction (PPI) network. Last, we further analyzed the 
10 core oncogenes through Kaplan Meier plotter online database and 
Gene Expression Profiling Interactive Analysis (GEPIA) respectively. 
Results: We discovered 10 key oncogenes which were associated with 
the progression and poor prognosis for NSCLC, including ANLN, CCNA2, 
CDCA7, DEPDC1, DLGAP5, HMMR, KIAA0101, RRM2, TOP2A, and UBE2T. 
Conclusion: These 10 genes can be served as the therapeutic targets 
and useful prognostic biomarkers for NSCLC treatment.

Keywords: Non-small cell lung cancer; Bioinformatical analysis; 
Prognostic biomarkers; Differentially expressed genes; Therapeutic 
targets.

Introduction
The lung cancer, which is the leading cause of cancer-related death 

in China and is responsible for more than 1 million deaths all over the 
world every year [1], can be divided two classes: non-small cell lung 
cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC accounts for 
approximately 85% of all lung cancer cases, including adenocarcinoma, 
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squamous cell carcinoma and large cell carcinoma. Nowadays, 
although great advance in pharmaceutical therapies for lung 
cancer patients, the overall survival is still poor. NSCLC has 
become the most lethal human cancer. Hence, it is necessary 
to find out the effective therapeutic targets in order to 
improve the prognosis of lung cancer patients. 

Gene chip, as a proven technique, could make many 
slice data be produced and stored in public databases [2]. 
Therefore, we can explore a large number of valuable clues 
via these data. Meanwhile, the integrated bioinformatic 
results also can help us to further study and discover the 
potential mechanism. In order to further discover the novel 
targets for treating NSCLC, we applied the public gene chip 
databases to carry on data mining. Through this study, we 
could find out some new candidate therapeutic targets for 
NSCLC, also it is useful for improving the survival and the 
quality of life. 

In the present study, as shown in figure 1, we chose 
4 databases related with non-small cell lung cancer from 
Gene Expression Omnibus (GEO), including GSE18842, 
GSE31210, GSE33532 and GSE101929. First, we found that 
there were 162 differentially expressed genes (DEGs) in 
these four databases above, including 41 up-regulated genes 
and 121 down-regulated genes in NSCLC tissues. Then, we 
did some other bioinformatic analyses and identified 10 
core genes by establishing protein-protein interaction (PPI) 
network. In order to confirm the important role of these 10 
core genes in NSCLC, we further analyzed the survival curve 
and the DEGs expression between NSCLC tissues and normal 
lung tissues through Kaplan Meier plotter online database 
and Gene Expression Profiling Interactive Analysis (GEPIA) 
respectively. Taken above, these 10 DEGs were all related 
with the prognosis of NSCLC. In conclusion, our bioinformatic 
study provides some additional useful biomarkers for NSCLC 
patients. These biomarkers can be considered as candidate 
therapeutic targets for NSCLC, and the results also supply 
some ideas for our further study.

Materials and Methods
Data source and preprocessing

NCBI-GEO (https://www.ncbi.nlm.nih.gov/geo/) was 
selected for our research, which is a free public database of 
microarray/gene profile. We used the key words (‘non-small 
cell lung cancer’ [All Fields] OR ‘lung adenocarcinomas’ 
[All Fields]) AND (‘human’ [Organism]) AND (‘Expression 
profiling by array’ [Filter]) to select related datasets. Next, 
we screened four gene expression profiles (including 
GSE18842, GSE31210, GSE33532 and GSE101929) 
according to the following inclusion criteria: a. Human 
NSCLC tissues, not cell lines; b. Normal lung tissues used 
as controls; c. The total sample numbers, containing tumor 
tissues and normal tissues, are over 50; d. These datasets 
have the same Platform in order to process the data easily. 
These four gene profiles we selected were all on account of 
GPL570 Platform. GSE18842 contained 46 NSCLC tissues 
and 45 normal lung tissues, GSE31210 included 226 NSCLC 
tissues and 20 normal lung tissues, GSE33532 covered 80 
NSCLC tissues and 20 normal lung tissues, and GSE101929 

incorporated 32 NSCLC tissues and 34 normal lung tissues.

Screening of differentially expressed genes (DEGs)
The DEGs between NSCLC tissues and normal lung 

tissues were screened by using the GEO2R online tools.  The 
fold change value (FC) obtained for each genes was indicated 
as logFC in order to normalize the data derived from the 
same microarray platform [3]. We considered DEGs as 
|logFC| >2 and adjust P value < 0.05. Venn software online 
(http://bioinformatics.psb.ugent.be/webtools/Venn/) was 
used to analyze the DEGs among the above four datasets via 
checking the raw data in TXT format. In the present study, 
the DEGs with log FC > 2 was considered as an up-regulated 
gene, and the DEGs with log FC < -2 was regarded as a down-
regulated gene.

DEGs gene ontology (GO) enrichment and Kyoto 
encyclopedia of genes and genomes (KEGG) 
pathway analyses

After screening the DEGs from the above four datasets, 
we performed the GO enrichment and KEGG pathway 
analyses using the Database for Annotation, Visualization 
and Integrated Discovery (DAVID) (https://david.ncifcrf.
gov/tools.jsp), which is designed to identify a huge number 
of genes or proteins function [4]. GO analysis is used to 
integrate annotation data and provide tools access to 
all the data provided by the study, and identify unique 
biological properties of these datasets [5]. KEGG can 
integrate the currently known protein interaction network 
information, including metabolism, genetic information 
processing, environmental information related processes, 
and cell physiological process, etc [6]. We used DAVID to 
perform biological analyses of DEGs and visualize the DEGs 
enrichment of biological processes (BP), molecular functions 
(MF), cellular components (CC) and pathways. P<0.05 was 
considered as significant difference.

Protein-protein interaction (PPI) network analysis
PPI network analysis was performed for the identified 

DEGs by using Search Tool for the Retrieval of Interacting 
Genes (STRING) (https://string-db.org/), which is an online 
software of interactions of genes and proteins. The PPI 
network could be visualized by Cytoscape in order to examine 
the potential correlation between the DEGs (maximum 
number of interactors=0 and confidence score ≥0.4) [7]. 
Besides, the Molecular Complex Detection (MCODE) app 
in Cytoscape was used to analyze the modules of the PPI 
network (degree cutoff=2, max. Depth=100, κ-core=2, and 
node score cutoff=0.2) [8].

Analyzing overall survival and RNA sequencing 
expression of core genes

Kaplan Meier-plotter (https://kmplot.com/analysis/) is 
a widely used website tool for illustrating the relationship 
between patients’ overall survival and gene expression 
levels of DEGs based on EGA, TCGA and GEO [9]. In this study, 
we acquired core genes corrected with the progression of 
NSCLC through the PPI network analysis. The correlation 
between core genes expression and survival in lung cancer 
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 Figure 1: The process of the work.
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was analyzed by Kaplan Meier-plotter. The hazard ratio 
(HR) with 95% confidence intervals and log-rank P value 
were also computed and showed on the plot. In order to 
validate the important of these core genes, we next used the 
GEPIA website (http://gepia.cancer-pku.cn/) to analyze the 
RNA sequencing expression data according to thousands of 
samples from the GTEx projects and TCGA [10], including 
lung adenocarcinoma (LUAD) and lung squamous cell 
carcinoma (LUSC).

Results
Screening of DEGs between NSCLC tissues and 
normal lung tissues

There were together 384 NSCLC tissues and 119 normal 
lung tissues in these four datasets that we chose to study. 
The up-regulated DEGs were statistically significant as 
logFC > 2 and P value < 0.05, while the down-regulated 
DEGs were statistically significant as logFC < -2 and P value 
< 0.05. Through GEO2R online tools, a total of 772, 443, 610, 
and 926 DEGs were extracted from GSE18842, GSE31210, 
GSE33532 and GSE101929, respectively. Among these DEGs, 
317 up-regulated DEGs and 455 down-regulated DEGs were 
included in GSE18842; 171 up-regulated DEGs and 272 
down-regulated DEGs were contained in GSE31210; 201 
up-regulated DEGs and 409 down-regulated DEGs were 
covered in GSE33532; 318 up-regulated DEGs and 608 
down-regulated DEGs were incorporated in GSE101929. 
Then, we screened the common DEGs in these four datasets 
by applying Venn diagram software online. Finally, we 
identified 162 common DEGs in NSCLC tissues, including 41 
up-regulated genes and 121 down-regulated genes (Figure 
2 and Table 1).

Analyzing of the DEGs GO enrichment

In our study, all 162 DEGs were analyzed by DAVID 
software in order to perform the functional process. The 
results were shown in figure 3 and table 2. In this part, we 
only summarized the top 5 different functional process: a. 
in the biological processes (BP) section, the up-regulated 
DEGs were mainly involved in collagen catabolic process, 
extracellular matrix disassembly, collagen fibril organization, 
sensory perception of sound, and proteolysis, while the 
down-regulated DEGs in angiogenesis, vasculogenesis, cell 
surface receptor signaling pathway, receptor internalization 
and vasoconstriction; b. in the cell composition (CC) part, 
the up-regulated DEGs were enriched in proteinaceous 
extracellular matrix, collagen trimer, extracellular region, 
and cytoplasm, while the down-regulated DEGs in integral 
component of plasma membrane, integral component of 
membrane, membrane raft, plasma membrane, and external 
side of plasma membrane; c. in the molecular function 
(MF) aspect, the down-regulated DEGs were particularly 
focused on receptor activity, heparin binding, ion channel 
binding, Ras guanyl-nucleotide exchange factor activity and 
angiotensin type II receptor activity, while up-regulated 
DEGs in no significant difference.

Analyzing of the DEGs KEGG pathways
In this study, the DEGs KEGG pathways were also 

performed by DAVID software. As shown in table 3, the 
results indicated that the DEGs were mainly enriched 
in ECM-receptor interaction, cell adhesion molecules, 
leukocyte transendothelial migration, protein digestion and 
absorption, PPAR signaling pathway, adrenergic signaling in 
cardiomyocytes and neuroactive ligand-receptor interaction.

 
 
Figure 2: Screening of 162 common DEGs from four gene expression datasets (GSE18842, GSE31210, GSE33532 and 
GSE101929) by applying Venn software online. Different color meant different datasets. (a), 41 common up-regulated DEGs in 
the four datasets (logFC>2); (b), 121 common down-regulated DEGs in the four datasets (logFC<-2). 

http://gepia.cancer-pku.cn/
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DEGs Name of genes

Up-regulated DEGs
CDH3 IGF2BP3 HMGB3 CRABP2 CXCL13 AKR1B10 COL1A1 ADAMDEC1 ANLN RRM2 TOP2A GJB2 TFAP2A DLGAP5 
ARNTL2 FERMT1 HMMR ANKRD22 TMPRSS4 HS6ST2 SPP1 NMU SIX1 COL10A1 LRRC15 GPR87 CDCA7 COL11A1 
PLPP2 CTHRC1 KIAA0101 GREM1 CCNA2 CP MMP1 MMP12 UBE2T MMP9 DEPDC1 MMP11 FAM83A

Down-regulated DEGs

HBA2///HBA1 RTKN2 EMCN SOX7 GPIHBP1 KCNT2 MFAP4 PEBP4 SLC6A4 PECAM1 KCNK3 MMRN2 NOSTRIN NCKAP5 
OGN SCARA5 CLDN5 BTNL9 IGSF10 SCGB1A1 CDO1 HIGD1B CA4 SDPR TEK GRK5 ID4 EXOSC7///CLEC3B DACH1 
LOC100653057///CES1 FAM150B ACKR1 STXBP6 LYVE1 ADAMTS8 GDF10 LEPROT///LEPR AKAP12 CD36 FAM162B 
GPD1 HSPA12B ROBO4 SPTBN1 CALCRL CAV1 RASIP1 PPBP JAM2 PTPRB FOXF1 ACADL ANKRD29 PIR-FIGF///FIGF 
AQP4 NEBL MT1M TNNC1 MCEMP1 HBB SERTM1 SELE FHL1 CPB2 SSTR1 FAM189A2 SORBS2 LRRN3 ABCA8 AOC3 
CCM2L SFTPC ADRB1 TCF21 TGFBR3 HHIP ADH1B ARHGEF26 ZBTB16 ASPA FABP4 EDNRB SCN4B FCN3 ZBED2 
MYCT1 KANK3 STX11 LINC00312 PLAC9 FAM107A CCDC85A CCBE1 AGER MARCO CD300LG TIE1 AGTR1 VIPR1 
WIF1 RAMP3 CLIC5 FGFR4 FHL5 MAMDC2 CAMK2N1 AGTR2 CLDN18 C2orf40 CDH5 PDK4 GPM6A COL6A6 CFD GKN2 
LRRC36 CYP4B1 HYAL1 TMEM100 DUOX1 AFF3

Table 1: All 162 common DEGs were screened from four gene expression datasets, including 41 up-regulated genes and 121 down-regulated genes.

Expression Category Term Count % P-value FDR

Up-regulated

GOTERM_BP_DIRECT GO:0030574~collagen catabolic process 7 17.07317 7.13E-09 9.86E-06

GOTERM_BP_DIRECT GO:0022617~extracellular matrix 
disassembly 5 12.19512 2.83E-05 0.039054

GOTERM_BP_DIRECT GO:0030199~collagen fibril organization 4 9.756098 9.99E-05 0.138003
GOTERM_BP_DIRECT GO:0007605~sensory perception of sound 5 12.19512 2.50E-04 0.344372
GOTERM_BP_DIRECT GO:0006508~proteolysis 6 14.63415 0.005729 7.635062

GOTERM_CC_DIRECT GO:0005578~proteinaceous extracellular 
matrix 7 17.07317 2.08E-05 0.020878

GOTERM_CC_DIRECT GO:0005581~collagen trimer 5 12.19512 4.37E-05 0.043936
GOTERM_CC_DIRECT GO:0005576~extracellular region 12 29.26829 4.05E-04 0.406599
GOTERM_CC_DIRECT GO:0005737~cytoplasm 18 43.90244 0.03293 28.59139

Down-regulated

GOTERM_BP_DIRECT GO:0001525~angiogenesis 11 9.482759 5.81E-07 9.01E-04
GOTERM_BP_DIRECT GO:0001570~vasculogenesis 5 4.310345 2.93E-04 0.454117

GOTERM_BP_DIRECT GO:0007166~cell surface receptor 
signaling pathway 8 6.896552 9.88E-04 1.520759

GOTERM_BP_DIRECT GO:0031623~receptor internalization 4 3.448276 0.001893 2.896712
GOTERM_BP_DIRECT GO:0042310~vasoconstriction 3 2.586207 0.00416 6.260617

GOTERM_CC_DIRECT GO:0005887~integral component of plasma 
membrane 24 20.68966 5.25E-06 0.006208

GOTERM_CC_DIRECT GO:0016021~integral component of 
membrane 49 42.24138 1.43E-04 0.169084

GOTERM_CC_DIRECT GO:0045121~membrane raft 8 6.896552 2.02E-04 0.237942
GOTERM_CC_DIRECT GO:0005886~plasma membrane 41 35.34483 3.06E-04 0.360544

GOTERM_CC_DIRECT GO:0009897~external side of plasma 
membrane 7 6.034483 0.001536 1.799873

GOTERM_MF_DIRECT GO:0004872~receptor activity 6 5.172414 0.006672 8.30861
GOTERM_MF_DIRECT GO:0008201~heparin binding 5 4.310345 0.011394 13.79895
GOTERM_MF_DIRECT GO:0044325~ion channel binding 4 3.448276 0.023849 26.85899

GOTERM_MF_DIRECT GO:0005088~Ras guanyl-nucleotide 
exchange factor activity 4 3.448276 0.024956 27.92675

GOTERM_MF_DIRECT GO:0004945~angiotensin type II receptor 
activity 2 1.724138 0.026957 29.82004

Table 2: Gene ontology analysis of all 162 common DEGs in NSCLC.

Pathway ID Pathway name Count % P-value Genes

hsa04512 ECM-receptor interaction 6 3.821656 0.001405 CD36, COL6A6, COL1A1, COL11A1, SPP1, 
HMMR

hsa04514 Cell adhesion molecules (CAMs) 7 4.458599 0.002286 CLDN18, PECAM1, CLDN5, JAM2, CDH3, 
SELE, CDH5

hsa04670 Leukocyte transendothelial migration 6 3.821656 0.004752 CLDN18, MMP9, PECAM1, CLDN5, JAM2, 
CDH5

hsa04974 Protein digestion and absorption 5 3.184713 0.009863 COL6A6, COL1A1, CPB2, COL11A1, 
COL10A1

hsa03320 PPAR signaling pathway 4 2.547771 0.026133 CD36, FABP4, ACADL, MMP1

hsa04261 Adrenergic signaling in cardiomyocytes 5 3.184713 0.042961 AGTR1, AGTR2, ADRB1, TNNC1, SCN4B

hsa04080 Neuroactive ligand-receptor interaction 7 4.458599 0.04882 EDNRB, AGTR1, AGTR2, ADRB1, SSTR1, 
CALCRL, VIPR1

Table 3: KEGG pathway analysis of 162 common DEGs in NSCLC.
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Analyzing of protein-protein interaction network 
(PPI) and modular

We applied the STRING database to build the PPI network, 
including 41 up-regulated genes and 121 down-regulated 
genes. A PPI network of the DEGs was presented as shown 
in figure 4a. Then we used Cytotype MCODE to construct a 
significant modular containing 10 nodes (ANLN, CCNA2, 
CDCA7, DEPDC1, DLGAP5, HMMR, KIAA0101, RRM2, TOP2A, 
and UBE2T) and 43 edges (Figure 4b). We discovered that 
these 10 central nodes were all up-regulated DEGs.

Analyzing of core genes
We next utilized Kaplan Meier-plotter and GEPIA to 

further analyze the 10 core genes. Kaplan Meier-plotter was 
used to illustrate the relationship between patients’ overall 
survival and gene expression levels of DEGs, while GEPIA to 
dig up the DEGs expression level between NSCLC and normal 
people. As shown in figure 5a, all the 10 core genes had an 
obviously worse survival when they had high expression in 
NSCLC patients (P＜0.05). GEPIA results also demonstrated 
that all the 10 genes expressed higher in NSCLC samples than 
normal lung tissues, including LUAD and LUSC (P＜0.05, 
Figure 5b).

 

 
Figure 3: Gene ontology analysis of all 162 common DEGs in NSCLC from four gene expression datasets (GSE18842, GSE31210, GSE33532 and 
GSE101929) by using DAVID software. (a), GO enrichment analysis of 41 common up-regulated DEGs; (b), GO enrichment analysis of 121 common down-
regulated DEGs.

Figure 4: Constructing the PPI network of 162 common DEGs by using STRING database and analysis the modular through applying Cytotype MCODE. (a), 
The PPI network of 162 common DEGs in NSCLC; (b), A significant modular containing 10 nodes (ANLN, CCNA2, CDCA7, DEPDC1, DLGAP5, HMMR, 
KIAA0101, RRM2, TOP2A, and UBE2T) and 43 edges.
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Figure 5: The important roles of the 10 core DEGs in NSCLC patients. (a), Analysis the relationship between NSCLC patients’ overall survival and gene 
expression levels of the 10 core DEGs by applying Kaplan Meier-plotter. As shown, all the 10 core genes had an obviously worse survival when they had high 
expression in NSCLC patients (P<0.05); (b), Analysis the 10 core DEGs expression level in NSCLC patients compared to healthy people by using GEPIA. As 
shown, all the 10 genes expressed higher in NSCLC samples than normal lung tissues, including LUAD and LUSC (*P<0.05). Red color means lung cancer 
tissues and grey color means normal lung tissues. 

Discussion  
As shown in figure 1, in this study, first, we together 

selected four NSCLC databases from GEO according to the 
screening principle which was described in the data source 
and preprocessing section; Second, we used GEO2R online 
tools to analyze the DEGs extracted from the four datasets 
respectively; Third, we applied Venn diagram software 
online to screen the common DEGs in these four datasets. In 
this part, we found that there were 162 DEGs in these four 
databases, including 41 up-regulated genes and 121 down-
regulated genes in NSCLC tissues; Fourth, we analyzed 
all the 162 DEGs GO enrichment and KEGG pathways by 
using DAVID software. As shown in table 3, the 162 DEGs 
were mainly enriched in ECM-receptor interaction, cell 
adhesion molecules, leukocyte transendothelial migration, 
protein digestion and absorption, PPAR signaling pathway, 
adrenergic signaling in cardiomyocytes and neuroactive 
ligand-receptor interaction to exert their biological function; 
Fifth, we constructed the PPI network of these 162 DEGs 

by applying the STRING database, then we discovered a 
significant modular containing 10 nodes through utilizing 
the Cytotype MCODE. These 10 core genes are ANLN, CCNA2, 
CDCA7, DEPDC1, DLGAP5, HMMR, KIAA0101, RRM2, TOP2A, 
and UBE2T; Last, we further analyzed the survival curve and 
the expression level between NSCLC tissues and normal lung 
tissues of these 10 core genes through Kaplan Meier plotter 
online database and GEPIA respectively. Taken together, we 
discovered that all the 10 genes were associated with poor 
prognosis in NSCLC, and they were all up-regulated DEGs. 

ANLN (Anillin), an actin binding protein, is first found 
in Drosophila as a 124 kDa protein and plays an important 
role in cytokinesis [11]. ANLN has higher expression levels 
in the brain, testis, and placenta, but lower expression levels 
in the heart, kidney, liver, pancreas, prostate, spleen and 
lung. Recently, ANLN has been identified as a prognostic 
biomarker in cervical cancer, breast cancer, pancreatic 
cancer, colorectal cancer, and bladder urothelial carcinoma. 
ANLN is also discovered overexpressing in the majority 
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of the primary NSCLC and is involved in the metastasis 
of lung cancer [12]. Pathway analysis demonstrated that 
ANLN participated in developmental processes through the 
regulation of nuclear division pathway [13]. 

CCNA2 (CyclinA2) belongs to a ubiquitously expressed 
member of the cyclin family and is expressed in almost all 
tissues in human [14]. Evidence indicated that CCNA2 was 
up-regulated in many kinds of cancers, and as an oncogenic 
gene, CCNA2 also played an important role in regulating 
cancer cell growth and apoptosis, especially controlling the 
cell cycle at the G1/S and the G2/M transitions [15]. CCNA2 
can be used as a prognostic biomarker for colorectal cancer, 
ER+ breast cancer, esophageal squamous cell carcinoma 
and pancreatic etc. Resent study indicated that CCNA2 
has higher expression in human NSCLC specimens than 
normal lung tissues, and could induce EMT and promote 
NSCLC metastasis via integrin αvβ3 signaling pathway [16]. 
However, further research is needed to uncover the target 
gene of CCNA2. 

CDCA7 (Cell division cycle-associated protein 7), also 
known as JPO1, is a new member of cell division cycle 
associated genes family [17]. CDCA7 has been identified as 
a DNA-binding protein [18]. MYC and E2F1 could bind to 
the promoter of CDCA7, thereby driving CDCA7 expression. 
Recently, CDCA7 was discovered as a critical regulator of 
lymphomagenesis and invasion [19], while overexpression 
of CDCA7 predicted poor prognosis in triple negative breast 
cancer and colorectal cancer [20,21]. Wang’s study indicated 
that CDCA7 was significantly overexpressed in LUAD 
compared with the normal lung tissues, and silencing CDCA7 
could inhibit cell proliferation through G1 phase arrest and 
induction of apoptosis [22]. In conclusion, CDCA7 can be 
considered as a therapeutic target for LUAD. 

DEPDC1 (DEP domain containing 1), a highly conserved 
protein, plays important roles in many biological processes, 
for example, cell proliferation, cell cycle progression, cell 
apoptosis and signaling transduction etc [23]. DEPDC1 was 
firstly reported to be highly overexpressed in bladder cancer 
and had a critical role in the development of the bladder 
cancer [24]. Nowadays, DEPDC1 is considered as a novel 
oncoantigen which is upregulated in many kinds of cancers, 
including hepatocellular carcinoma, nasopharyngeal 
carcinoma, prostate cancer, breast cancer, and malignant 
glioma. DEPDC1 expression is also increased in LUAD and 
can be applied as a prognostic biomarker for NSCLC patients 
[25]. Recently, DEPDC1 was found inducing apoptosis in 
A549 lung adenocarcinoma cells by the NF-κB signaling 
pathway [26]. Further studies are needed to explore the 
mechanism of DEPDC1. 

DLGAP5 (disc large homolog-associated protein 5), 
a mitotic spindle protein, can exert important biological 
function as a signaling molecule because it contains a 
guanylate-kinase-associated protein (GKAP) domain, 
which is highly conserved among many species and found 
in various eukaryotic signaling proteins [27] DLGAP5 
overexpression could promote the proliferation potential of 
human cells, and the overexpression also been discovered 
in hepatocellular carcinoma, prostate cancer, colorectal 

cancer and adrenocortical carcinoma. Recently, studies 
also uncovered that DLGAP5 was highly overexpressed in 
the lung cancer tissues compared to corresponding normal 
lung tissues [28]. Hence, DLGAP5 can be used as promising 
biomarker for early detection of lung cancer. 

HMMR (Hyaluronan-mediated motility receptor), as an 
oncogene, is found highly up-regulated and plays important 
roles during the progression of human leukemias and solid 
tumors [29,30]. Tilghman’s work revealed that HMMR was 
overexpressed in glioblastoma (GBM) tumors where it 
supported the self-renewal and tumorigenic potential of GBM 
stem cells [31]. Taken together, HMMR not only promotes 
the progression of tumor, but also maintains the cancer stem 
cell (CSC) stemness. Meanwhile, some other studies have 
developed HMMR with great value for prognostic prediction 
in NSCLC [32]. But further research is needed to state the 
regulated mechanism of HMMR in NSCLC.

KIAA0101, also named as proliferating cell nuclear 
antigen (PCNA)-associated factor (PAF15), functions as an 
oncogene and is upregulated in various cancers, including 
breast cancer, esophageal cancer, hepatocellular carcinoma, 
ovarian cancer and lung cancer. KIAA0101 has been recently 
considered as a potential biomarker for recurrence and poor 
prognosis in tumor patients. Kato’s study discovered that 
KIAA0101 was overexpressed in the great majority  of lung 
cancers, and KIAA0101 could be used as a specific target to 
treat lung cancer [33]. 

RRM2 (Ribonucleotide reductase M2 subunit), a small 
subunit of the ribonucleotide reductase complex, is a rate-
limiting enzyme for dNTP producing and displays critical 
roles in many cellular processes such as cell proliferation, 
invasiveness, migration and angiogenesis [34]. RRM2 has 
been reported overexpressing in various malignancies as 
a tumor driver, including breast cancer, gliomas, colorectal 
cancer, bladder cancer and NSCLC. Yang’s work found 
RRM2 was upregulated in NSCLC tumor and cell lines, 
and the aberrant upregulation predicted a poor prognosis 
[35]. Mechanistically, they also revealed the vital role of 
LINC00667/miR-143-3p/RRM2 signal pathway in the 
NSCLC progression. In conclusion, RRM2 can be used as a 
therapeutic target for NSCLC.  

TOP2A (Topoisomerase 2-alpha) encodes a nuclear 
enzyme which implicates in almost any processes of 
DNA metabolism, such as replication, transcription and 
chromosome segregation during interphase and mitosis 
[36]. It has been reported that TOP2A has higher expression 
level in a variety of human cancers, including gastric cancer, 
bladder urothelial carcinoma, colon cancer and pancreatic 
cancer. Meanwhile, TOP2A also can be considered as the 
target for some of the most widely used chemotherapeutic 
drugs for human cancers treatment [37]. But the role of 
TOP2A in progression of NSCLC has not been elucidated.

UBE2T (Ubiquitin-conjugating enzyme E2T, also named 
as HSPC150), a member of the E2 family, is firstly identified 
in a patient with Fanconi anemia (FA) [38]. UBE2T takes 
part in main cellular processes such as cell cycle control, 
signal transduction and tumorigenesis through working 
with specific E3 ubiquitin ligase to active the degradation 
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of relevant substrates [39]. UBE2T has been also discovered 
overexpressed in prostate cancer, osteosarcoma, gastric 
cancer, hepatocellular carcinoma and lung cancer. But the 
mechanism of UBE2T to promote the progression of NSCLC 
is not clear now. Further studies are needed to clarify the 
relationship between UBE2T and NSCLC. 

Conclusion
In conclusion, we discovered 10 key oncogenes which 

were associated with the progression and poor prognosis 
for NSCLC through our research, including ANLN, CCNA2, 
CDCA7, DEPDC1, DLGAP5, HMMR, KIAA0101, RRM2, TOP2A, 
and UBE2T. These 10 genes can be served as the therapeutic 
targets and useful prognostic biomarkers for NSCLC 
treatment. But the mechanism of these genes to regulate 
the progression of NSCLC is needed to explore, it is useful to 
design new drugs targeting these oncogenes. 

Statement of Ethics
This article does not contain any studies with human 

participants or animals performed by any of the authors.

Declaration of Conflicting Interest
The authors declared no potential conflicts of interest 

with respect to the research, authorship, and publication of 
this article.

Author Contributions
L Wang and N Hu conceived and designed the idea to this 

manuscript; W Wu and C Fang collected and analyzed the 
data, and drafted the manuscript; C Zhang collected the data 
and revised the manuscript. All authors confirmed the final 
version of the manuscript for submission.

Funding
This work was supported by National Natural Science 

Foundation of China (Grant No. 81803933) and Xinglin 
Young Talent Program of Shanghai University of Traditional 
Chinese Medicine (Grant No. A1-R20-409-01-0301).
References

1. Miller KD, Goding Sauer A, Ortiz AP, Fedewa SA, Pinheiro PS, et al. (2018) 
Cancer Statistics for Hispanics/Latinos, 2018. CA Cancer J Clin 68: 425-445. 

2. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, et al. 
(2013) Cancer genome landscapes. Science 339: 1546-1558. 

3. Falzone L, Lupo G, La Rosa GRM, Crimi S, Anfuso CD, et al. (2019) 
Identification of Novel MicroRNAs and Their Diagnostic and Prognostic 
Significance in Oral Cancer. Cancers 11: 610. 

4. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative 
analysis of large gene lists using DAVID bioinformatics resources. Nature 
Protocols 4: 44-57. 

5. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene 
Ontology: tool for the unification of biology. Nature Genetics 25: 25-29. 

6. Zhong M, Wu YL, Ou WJ, Huang LJ, Yang LY (2019) Identification of key 
genes involved in type 2 diabetic islet dysfunction: a bioinformatics 
study. Bioscience Reports 39: Bsr20182172.

7. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. (2003) Cytoscape: 
a software environment for integrated models of biomolecular 
interaction networks. Genome Res 13: 2498-2504. 

8. Feng H, Gu ZY, Li Q, Liu QH, Yang XY, et al. (2019) Identification 
of significant genes with poor prognosis in ovarian cancer via 

bioinformatical analysis. J Ovarian Res 12: 35. 

9. Szasz AM, Lanczky A, Nagy A, Forster S, Hark K, et al. (2016) Cross-
validation of survival associated biomarkers in gastric cancer using 
transcriptomic data of 1,065 patients. Oncotarget 7: 49322-49333. 

10. Tang Z, Li C, Kang B, Gao G, Li C, et al. (2017) GEPIA: a web server for 
cancer and normal gene expression profiling and interactive analyses. 
Nucleic Acids Res 45(W1): W98-W102. 

11. Piekny AJ, Maddox AS (2010) The myriad roles of Anillin during 
cytokinesis. Semin Cell Dev Biol 21:  881-891. 

12. Xu J, Zheng H, Yuan S, Zhou B, Zhao, W, et al. (2019) Overexpression of 
ANLN in lung adenocarcinoma is associated with metastasis. Thorac 
Cancer 10: 1702-1709. 

13. Long X, Zhou W, Wang Y, Liu S (2018) Prognostic significance of ANLN in 
lung adenocarcinoma. Oncol Lett 16: 1835-1840. 

14. Ko E, Kim Y, Cho EY, Han J, Shim YM, et al. (2013) Synergistic effect of 
Bcl-2 and cyclin A2 on adverse recurrence-free survival in stage I non-
small cell lung cancer. Ann Surg Oncol 20: 1005-1012. 

15. Gan Y, Li Y, Li T, Shu G, Yin G (2018) CCNA2 acts as a novel biomarker in 
regulating the growth and apoptosis of colorectal cancer. Cancer Manag 
Res 10: 5113-5124. 

16. Ruan JS, Zhou H, Yang L, Wang L, Jiang ZS, et al. (2017) CCNA2 facilitates 
epithelial-to-mesenchymal transition via the integrin alphavbeta3 
signaling in NSCLC. Int J Clin Exp Pathol 10: 8324-8333.

17. Guiu J, Bergen DJ, De Pater E, Islam AB, Ayllon V, et al. (2014) 
Identification of Cdca7 as a novel Notch transcriptional target involved 
in hematopoietic stem cell emergence. J Exp Med 211: 2411-2423. 

18. Prescott JE, Osthus RC, Lee LA, Lewis BC, Shim H, et al. (2001) A novel 
c-Myc-responsive gene, JPO1, participates in neoplastic transformation. 
J Biol Chem 276: 48276-48284. 

19. Jimenez PR, Martin-Cortazar C, Kourani O, Chiodo Y, Cordoba R, et al. 
(2018) CDCA7 is a critical mediator of lymphomagenesis that selectively 
regulates anchorage-independent growth. Haematologica, 103: 1669-
1678. 

20. Li D, Jiang X, Zhang X, Cao G, Wang D, et al. (2019) Long noncoding RNA 
FGD5-AS1 promotes colorectal cancer cell proliferation, migration, and 
invasion through upregulating CDCA7 via sponging miR-302e. In Vitro 
Cell Dev Biol Anim 55: 577-585. 

21. Ye L, Li F, Song Y, Yu D, Xiong Z, et al. (2018) Overexpression of CDCA7 
predicts poor prognosis and induces EZH2-mediated progression of 
triple-negative breast cancer. Int J Cancer 143: 2602-2613. 

22. Wang H, Ye L, Xing Z, Li H, Lv T, et al. (2019) CDCA7 promotes lung 
adenocarcinoma proliferation via regulating the cell cycle. Pathol Res 
Pract 215: 152559. 

23. Zhou C, Wang P, Tu M, Huang Y, Xiong F, et al. (2019) DEPDC1 promotes 
cell proliferation and suppresses sensitivity to chemotherapy in human 
hepatocellular carcinoma. Biosci Rep 39: BSR20190946. 

24. Kanehira M, Harada Y, Takata R, Shuin T, Miki T, et al. (2007) 
Involvement of upregulation of DEPDC1 (DEP domain containing 1) in 
bladder carcinogenesis. Oncogene 26: 6448-6455. 

25. Okayama H, Kohno T, Ishii Y, Shimada Y, Shiraishi K, et al. (2012) 
Identification of genes upregulated in ALK-positive and EGFR/KRAS/
ALK-negative lung adenocarcinomas. Cancer Res 72: 100-111. 

26. Wang Q, Li A, Jin J, Huang G (2017) Targeted interfering DEP domain 
containing 1 protein induces apoptosis in A549 lung adenocarcinoma 
cells through the NF-kappaB signaling pathway. Onco Targets Ther 10: 
4443-4454. 

27. Liao W, Liu W, Yuan Q, Liu X, Ou Y, et al. (2013) Silencing of DLGAP5 
by siRNA significantly inhibits the proliferation and invasion of 
hepatocellular carcinoma cells. Plos One 8: e80789. 

28. Schneider MA, Christopoulos P, Muley T, Warth A, Klingmueller U, et al. 
(2017) AURKA, DLGAP5, TPX2, KIF11 and CKAP5: Five specific mitosis-
associated genes correlate with poor prognosis for non-small cell lung 
cancer patients. Int J Oncol 50: 365-372. 

https://dx.doi.org/10.3322/caac.21494
https://dx.doi.org/10.1126/science.1235122
https://dx.doi.org/10.3390%2Fcancers11050610
https://dx.doi.org/10.3390%2Fcancers11050610
https://dx.doi.org/10.1038/nprot.2008.211
https://dx.doi.org/10.1038/nprot.2008.211
https://dx.doi.org/10.1038/nprot.2008.211
https://doi.org/10.1038/75556
https://doi.org/10.1038/75556
https://doi.org/10.1042/BSR20182172
https://doi.org/10.1042/BSR20182172
https://doi.org/10.1042/BSR20182172
https://dx.doi.org/10.1101/gr.1239303
https://dx.doi.org/10.1101/gr.1239303
https://dx.doi.org/10.1101/gr.1239303
https://dx.doi.org/10.1186/s13048-019-0508-2
https://dx.doi.org/10.1186/s13048-019-0508-2
https://dx.doi.org/10.1186/s13048-019-0508-2
https://dx.doi.org/10.18632/oncotarget.10337
https://dx.doi.org/10.18632/oncotarget.10337
https://dx.doi.org/10.18632/oncotarget.10337
https://dx.doi.org/10.1093/nar/gkx247
https://dx.doi.org/10.1093/nar/gkx247
https://dx.doi.org/10.1093/nar/gkx247
https://dx.doi.org/10.1016/j.semcdb.2010.08.002
https://dx.doi.org/10.1016/j.semcdb.2010.08.002
https://dx.doi.org/10.1111/1759-7714.13135
https://dx.doi.org/10.1111/1759-7714.13135
https://dx.doi.org/10.1111/1759-7714.13135
https://dx.doi.org/10.3892/ol.2018.8858
https://dx.doi.org/10.3892/ol.2018.8858
https://dx.doi.org/10.1245/s10434-012-2727-2
https://dx.doi.org/10.1245/s10434-012-2727-2
https://dx.doi.org/10.1245/s10434-012-2727-2
https://dx.doi.org/10.2147/CMAR.S176833
https://dx.doi.org/10.2147/CMAR.S176833
https://dx.doi.org/10.2147/CMAR.S176833
https://www.innovationinfo.org/journal-of-biomedical-research-and-reviews/articles_inpress
https://www.innovationinfo.org/journal-of-biomedical-research-and-reviews/articles_inpress
https://www.innovationinfo.org/journal-of-biomedical-research-and-reviews/articles_inpress
https://dx.doi.org/10.1084/jem.20131857
https://dx.doi.org/10.1084/jem.20131857
https://dx.doi.org/10.1074/jbc.M107357200
https://dx.doi.org/10.1074/jbc.M107357200
https://dx.doi.org/10.1074/jbc.M107357200
https://dx.doi.org/10.3324/haematol.2018.188961
https://dx.doi.org/10.3324/haematol.2018.188961
https://dx.doi.org/10.3324/haematol.2018.188961
https://dx.doi.org/10.1007/s11626-019-00376-x
https://dx.doi.org/10.1007/s11626-019-00376-x
https://dx.doi.org/10.1007/s11626-019-00376-x
https://dx.doi.org/10.1007/s11626-019-00376-x
https://dx.doi.org/10.1002/ijc.31766
https://dx.doi.org/10.1002/ijc.31766
https://dx.doi.org/10.1002/ijc.31766
https://dx.doi.org/10.1016/j.prp.2019.152559
https://dx.doi.org/10.1016/j.prp.2019.152559
https://dx.doi.org/10.1016/j.prp.2019.152559
https://dx.doi.org/10.1042/BSR20190946
https://dx.doi.org/10.1042/BSR20190946
https://dx.doi.org/10.1042/BSR20190946
https://dx.doi.org/10.1038/sj.onc.1210466
https://dx.doi.org/10.1038/sj.onc.1210466
https://dx.doi.org/10.1158/0008-5472.CAN-11-1403
https://dx.doi.org/10.1158/0008-5472.CAN-11-1403
https://dx.doi.org/10.2147/OTT.S142244
https://dx.doi.org/10.2147/OTT.S142244
https://dx.doi.org/10.2147/OTT.S142244
https://dx.doi.org/10.2147/OTT.S142244
https://dx.doi.org/10.1371/journal.pone.0080789
https://dx.doi.org/10.1371/journal.pone.0080789
https://dx.doi.org/10.1371/journal.pone.0080789
https://dx.doi.org/10.3892/ijo.2017.3834
https://dx.doi.org/10.3892/ijo.2017.3834
https://dx.doi.org/10.3892/ijo.2017.3834


www.innovationinfo.org

50ISSN: 2581-7388

29. Giannopoulos K, Li L, Bojarska-Junak A, Rolinski J, Dmoszynska A, et 
al. (2006) Expression of RHAMM/CD168 and other tumor-associated 
antigens in patients with B-cell chronic lymphocytic leukemia. Int J 
Oncol 29: 95-103.

30. Maxwell CA, McCarthy J, Turley E (2008) Cell-surface and mitotic-
spindle RHAMM: moonlighting or dual oncogenic functions? J Cell Sci 
121: 925-932. 

31. Tilghman J, Wu H, Sang Y, Shi X, Guerrero-Cazares H, et al. (2014) HMMR 
maintains the stemness and tumorigenicity of glioblastoma stem-like 
cells. Cancer Res, 74: 3168-3179. 

32. He R, Zuo S (2019) A Robust 8-Gene Prognostic Signature for Early-Stage 
Non-small Cell Lung Cancer. Front Oncol 9: 693. 

33. Kato T, Daigo Y, Aragaki M, Ishikawa K, Sato M, et al. (2012) 
Overexpression of KIAA0101 predicts poor prognosis in primary lung 
cancer patients. Lung Cancer 75: 110-118. 

34. Nordlund P, Reichard P (2006) Ribonucleotide reductases. Annu Rev 

Biochem 75: 681-706. 

35. Yang Y, Li S, Cao J, Li Y, Hu H, et al. (2019) RRM2 Regulated By 
LINC00667/miR-143-3p Signal Is Responsible For Non-Small Cell Lung 
Cancer Cell Progression. Onco Targets Ther 12: 9927-9939. 

36. Nuncia-Cantarero M, Martinez-Canales S, Andres-Pretel F, Santpere G, 
Ocana A, et al. (2018) Functional transcriptomic annotation and protein-
protein interaction network analysis identify NEK2, BIRC5, and TOP2A 
as potential targets in obese patients with luminal A breast cancer. 
Breast Cancer Res Treat 168: 613-623. 

37. Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. 
Nat Rev Cancer 9: 338-350. 

38. Machida YJ, Machida Y, Chen Y, Gurtan AM, Kupfer GM,et al. (2006) 
UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative 
autoregulation. Mol Cell 23: 589-596. 

39. Lim KH, Song MH, Baek KH (2016) Decision for cell fate: deubiquitinating 
enzymes in cell cycle checkpoint. Cell Mol Life Sci 73: 1439-1455. 

Citation: Wu W, Fang C, Zhang C, Hu N, Wang L (2020) Identification of 10 Important Genes with Poor Prognosis in Non-Small Cell Lung Cancer through 
Bioinformatical Analysis. J Biomed Res Rev Vol: 3, Issu: 2 (41-50).

https://doi.org/10.3892/ijo.29.1.95
https://doi.org/10.3892/ijo.29.1.95
https://doi.org/10.3892/ijo.29.1.95
https://dx.doi.org/10.1242/jcs.022038
https://dx.doi.org/10.1242/jcs.022038
https://dx.doi.org/10.1242/jcs.022038
https://dx.doi.org/10.1158/0008-5472.CAN-13-2103
https://dx.doi.org/10.1158/0008-5472.CAN-13-2103
https://dx.doi.org/10.1158/0008-5472.CAN-13-2103
https://dx.doi.org/10.3389/fonc.2019.00693
https://dx.doi.org/10.3389/fonc.2019.00693
https://dx.doi.org/10.1016/j.lungcan.2011.05.024
https://dx.doi.org/10.1016/j.lungcan.2011.05.024
https://dx.doi.org/10.1146/annurev.biochem.75.103004.142443
https://dx.doi.org/10.1146/annurev.biochem.75.103004.142443
https://dx.doi.org/10.2147/OTT.S221339
https://dx.doi.org/10.2147/OTT.S221339
https://dx.doi.org/10.2147/OTT.S221339
https://dx.doi.org/10.1007/s10549-017-4652-3
https://dx.doi.org/10.1007/s10549-017-4652-3
https://dx.doi.org/10.1007/s10549-017-4652-3
https://dx.doi.org/10.1007/s10549-017-4652-3
https://dx.doi.org/10.1038/nrc2607
https://dx.doi.org/10.1038/nrc2607
https://dx.doi.org/10.1016/j.molcel.2006.06.024
https://dx.doi.org/10.1016/j.molcel.2006.06.024
https://dx.doi.org/10.1007/s00018-015-2129-2
https://dx.doi.org/10.1007/s00018-015-2129-2

	Title
	Article Information

