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Abstract
A series of spreadsheet simulations using SEIS, SEIR, and SEIRS 

models showed that different durations of effective immunity could 
have important consequences for the prevalence of an epidemic disease 
with COVID-19 characteristics. Immunity that lasted three months, six 
months, one year, and two years was tested with pathogen R0 values 
of 1.5, 2.3, 3.0, and 4.0. Immunity that lasted from three months to two 
years produced recurrent disease outbreaks triggered by the expiration 
of immunity. If immunity waned gradually instead of persisting at full 
effectiveness to the end of the immune period, the recurrent outbreaks 
became more frequent. The number of times an average individual 
became infected during the epidemic was markedly higher when the 
duration of immunity was shorter. The duration of effective immunity is 
vital for predicting the epidemiology of a disease like COVID-19.
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Introduction
The ability of the immune system to protect a person recovering from 

COVID-19 from further infection is an important question in management 
of the COVID-19 pandemic. The majority of infected individuals do clear 
the SARS-CoV-2 virus from their bodies, and do create antibodies and 
T-cells against the virus (reviewed in Huang et al. and in Prompetchara 
et al.), but how long this response remains protective is unclear [1,2]. 
The duration of immunity to SARS-CoV-2 is also of great importance for 
the practicality of a vaccine. 

In past epidemics, the duration of immunity has not often been 
directly determined, but it is still regarded as a key variable, especially 
for the effectiveness of vaccines. Mathews et al. concluded that waves 
of infection in the 1918-1919 influenza pandemic swept across England 
partly because antigenic drift and waning of immunity caused 33-65% 
of recovered victims to lose immunity between waves [3]. Ray et al. 
found that the effectiveness of influenza vaccines at preventing infection 
declined measurably over a period of weeks [4]. Kucharski et al. modeled 
the process by which a lifetime of infections with different influenza 
A strains builds an individual’s ability to respond to future strains 
[5]. They found that cross-reactivity between strains decayed rapidly 
(half-life of 2.4 years). In the 2009 H1N1 influenza pandemic, Tunheim 
et al. reported that vaccinated and unvaccinated pregnant women in 
Norway suffered a similar decline in antibody titers after the disease or 
vaccination, with the titer half-life being approximately 200 days [6]. 
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important datum in this matrix.  

This report explores the effects of the duration of 
immunity in a constant, non-seasonal environment. It uses 
simulation to determine the effect of immune responses that 
are protective for time periods ranging from three months to 
two years after the conclusion of the infective period. 

Methods--The Model
The simulations were SEIS, SEIR, and SEIRS models done 

using difference equations on an Excel spreadsheet. The 
iteration interval (each line and column on the spreadsheet) 
was one day. The most complex model (SEIRS) contained 
four different groups of individuals in a model population of 
1000: susceptible, exposed (infected but not yet infective), 
infective, and immune, with the following durations:

Susceptible  Exposed (5 days)  Infective (5 days)  
Immune (90-728 days)  Susceptible

Each exposed, infective, and immune individual moved 
one day at a time through its compartment. For example, an 
exposed individual was moved from day one of exposure to 
day two, then to day three, etc. In the SEIS model, an infective 
individual cycled back to the susceptible group when its 
time in the infective group finished; in the SEIR model, it 
permanently entered the immune group when the infection 
was over; in the SEIRS model, it cycled back to susceptible 
when its time in the immune group had expired. 

Some simulations departed from this chronological 
progression by employing “immune waning.” In waning, 
some immune individuals left the immune compartment and 
returned to the susceptible compartment early. This caused 
the number of immune individuals to slowly decrease over 
time rather than lasting undiminished to the end of the 
immune period. Waning affected just the number of immune 
individuals, not the strength of immunity of those remaining 

Turning to COVID-19, Kissler et al. did a simulation 
study that explored the duration of immunity plus several 
other variables such as the strength of social distancing, 
cross-immunity to betacoronaviruses, and seasonal changes 
in the basic reproduction number (R0) to simulate the 
“postpandemic period” for COVID-19 [7]. They found that 
shorter duration of immunity (about 40 weeks) tended 
to trigger annual outbreaks, but longer durations (up to 
two years) produced biennial outbreaks. They found that 
if immunity was permanent, the disease could disappear 
after its initial outbreak. These findings were influenced 
by the fact that Kissler et al. increased R0 in the fall and 
decreased it in the spring of each simulated year to model 
seasonal effects common in flu epidemics [7]. Britton et 
al. did extensive simulations of a COVID-19-like disease in 
order to determine the effect of population heterogeneity 
on the development of herd immunity, but in their models, 
immunity was assumed to last “for an extended period 
of time,” longer than the events they simulated [8]. Saad-
Roy et al. simulated a more complex “immune landscape” 
in which different levels and durations of immunity could 
result from primary infection, secondary infection, and 
vaccination. They found that variations in immunity and NPIs 
(nonpharmaceutical interventions such as social distancing) 
could result in dramatically different epidemic outcomes [9]. 
They emphasized that the immune response to SARS-CoV-2 
is a vital area of study. Papachristodoulou et al. suggested 
that immunity to the COVID pathogen may be so weak and of 
such short duration that herd immunity may be impossible, 
and they called for urgent research on the immune response 
to COVID-19 [10].

Radanliev et al. proposed an ambitious system of 
“predictive, preventive and personalized pandemic 
management strategies” and surveillance to combat 
pandemics [11]. Given the literature above, it seems clear 
that the duration of immunity to SARS-CoV-2 should be an 

 

Figure 1: The size of a cohort of 1,000 newly-immune individuals under three conditions of immune “waning.” “50% Waning” means that half the immune 
individuals lose their immunity before their one year of immunity ended. At one year, all the remaining immune individuals become susceptible again. 
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in the immune compartment. Waning is illustrated in figure 
1 for a cohort of 1000 newly-immune individuals with a 
maximum duration of immunity of one year.

Although “Exposed” and “Infective” groups were handled 
separately in the calculations, they were lumped into one 
group called “Infected” in the graphs that follow.

The model included no death, birth, vaccine, or seasonal 
change. The simulations started when one individual at the 
very beginning of its five-day infective career entered the 
population of 999 susceptible individuals.

The number of new infections generated per infective per 
day on day t was defined by 

it = (R0/5)*[St/(St + It + Rt)]

where, St, It, and Rt are the numbers of susceptible, 
infected, and immune hosts and the “5” refers to the 5-day 
length of the infective period. 

All simulations were done with four values of the basic 
reproduction number (R0): 4.0, 3.0, 2.3, and 1.5.

Results
The results are shown in figures 2-8 below, which 

extend from no immunity, through immunity of increasing 
duration, to permanent immunity in figure 8. Figures 2-8 do 
not include any immune waning. Every immune organism 
experienced its full duration of immunity.

Figures 3-7 show that long periods of immunity (but not 
permanent immunity) lead to outbreaks of disease at long 
intervals. This pattern is retained when immune waning 
is in effect, but the more complete the waning is, the more 
frequent the outbreaks become (Table 1).

However, despite the more frequent outbreaks with 
greater immune waning, the peak number of individuals 

infected in each outbreak was virtually the same as when 
there was no waning. 

For simulations without immune waning, the time 
between peaks is 2.35-2.40 times the duration of immunity 
(e.g., 863 days for immunity that lasts 364 days). 

One final effect of the duration of immunity relates 
to the number of cases of COVID-19 that the population 
experiences per capita. If there is no vaccine, shorter 
durations of immunity mean more peaks per time interval, a 
greater risk of catching the disease, greater economic harm 
due to lockdowns and absenteeism, etc. Because immune 
waning decreases the time between peaks, waning also 
results in less effective immunity and more cases per capita. 
Using an R0 of 2.3 and a uniform simulation length of 2000 
days (5.48 years), table 2 shows that the number of cases 
per capita over 2000 days can vary from 18.481 to 1.741, 
depending on duration of immunity and degree of waning.

Since almost all the cases occur during peaks, if 2000 days 
includes the same number of peaks as a shorter duration of 
immunity, the per capita case rate will be almost the same 
for the two durations.

Finally, as might be expected, a higher R0 also gives a 
higher per capita case rate (Table 3), with longer durations 
of immunity leading to fewer infections for each R0.

Discussion
This research produced both expected and unexpected 

results about the duration of immunity to a COVID-like 
disease. 

On the expected results, figures 2 and 8 show that the 
SEIS and SEIR models as implemented on the spreadsheet 
produced the classic, anticipated results. Also, use of a 
higher R0 in the SEIRS models produced higher peaks, and 
more sweeping fluctuations that resisted settling down to 

 

 

Figure 2: An SEIS model (no immunity). The infections achieve a stable equilibrium where the proportion of infected = 1 - (1/R0), as expected. The four curves 
represent the four tested values of R0. 
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Figure 3: SEIRS model with 3 months of immunity.

 

Figure 4: SEIRS model with 6 months of immunity. X-axis extends to 1000 days.

 

Figure 5: SEIRS model with one year of immunity. Note that the x-axis extends out to 2000 days (more than five years).
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Figure 6: The portion of figure 5 from 400-1000 days using R0 = 2.3. Note how the decline in immune hosts due to the ending of their one year of immunity 
(gray) produces an increase in susceptible hosts (orange), and this in turn causes an increase in infected hosts (blue) after a lag of more than a year.

 
Figure 7: SEIRS model with 2 years of immunity. X-axis extends to 5000 days (almost 14 years).

 

 
Figure 8: SEIR model with permanent immunity. The epidemic ends for all values of R0.
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Duration No Waning 50% Waning 99% Waning

3 Months 188.0 152.0 99.0

6 Months 424.3 326.2 193.0

1 Year 863.0 646.7 387.8

2 Years 1740.5 1295.7 766.2

Table 1: Time (in days) between outbreak peaks for 0%, 50%, and 99% immune waning for immune periods of various durations R0 = 2.3 in all cases.

Table 2: Number of COVID-19 cases per capita in a 2000-day simulation R0 = 2.3.

Duration No Waning 50% Waning 99% Waning

3 Months 8.709 10.610 18.481

6 Months 4.353 5.230 8.763

1 Year 2.612 2.613 4.354

2 Years 1.741 1.741 2.612

Table 3: Number of COVID-19 cases per capita in a 2000-day simulation, without waning.

Duration R0 = 1.5 R0 = 2.3 R0 = 3.0
3 Months 6.051 8.709 8.538
6 Months 2.936 4.353 4.743

1 Year 1.760 2.612 2.843
2 Years 1.173 1.741 1.845

an equilibrium value. For example, contrast the different R0 
curves in figure 3. 

The most unexpected outcome is that even relatively short 
periods of immunity could produce persistent oscillations. 
Consider figure 3 again. Immunity lasting three months 
produced repeated outbreaks about every 240 days for R0 
= 4.0 and 185 days for R0 = 1.5. The lower R0 was, the lower 
the peaks were, but sequential peaks for the same R0 were 
almost identical in size. The same pattern of nearly-identical 
peaks at long intervals is seen in figure 4, 5, and 7. The 
effect of increasing the duration of immunity is to make the 
interval between the peaks longer. As pointed out in table 1, 
when no immune waning is in effect, the peaks seem to be 
separated by an interval that is about 2.4 times the duration 
of immunity for an R0 of 2.3. As R0 rises, the interpeak interval 
gets longer, but the overall pattern is the same. 

These strong, renewed outbreaks after immunity “times 
out” seem to be a robust feature of the model. 

Figure 6 explains the timing of the outbreaks for one year 
of immunity. At the left side of the figure, immunity (the gray 
curve) is rapidly declining, and the susceptibles are going 
up as a result. By 500 days, 999.97 of 1000 organisms are 
susceptible and 0.03 are immune. Infected organisms are at 
a very low level. But infected hosts slowly increase over the 
next year, reaching 1.0 infected organism on day 860. From 
this point, the number of infections increases explosively. 
It appears that the interval between outbreaks is mainly 
established by how low the number of infected organisms 
goes after the previous peak. The results of the immune 
waning simulations reinforce this conclusion.

“Immune waning,” in which immunity gradually fades 
away rather than persisting undiminished to the end of the 
immune period, does not change the height of the peaks, but 
it does make the outbreaks more frequent. The interpeak 
interval is mainly established by the ability of infected 

individuals to recover from very low numbers. When 
waning is occurring, early release of immune individuals 
to the susceptible population keeps the infected population 
higher than it would be without waning. For example, in the 
simulations in which immunity lasted a year, the low point 
of the infected individuals between the first two peaks was 
3.6 x 10-20 when there was no immune waning, but it was 5.3 
x 10-11 with 50% waning and 6.7 x 10-5 with 99% waning. 
With higher numbers of infected individuals between peaks, 
recovery will be faster and the peaks will be closer together. 
Immunity where 99% of the individuals revert to susceptible 
before the immune period is finished can cut the interpeak 
time interval by more than half.

The very low number of infected individuals between 
the peaks raises the question of stochastic extinction of the 
pathogen, but this deterministic model that did not include 
that outcome. Also, because the exact timing of peaks 
depends on the low point of infected organisms, this timing 
could be heavily influenced by stochastic factors such as 
input of small numbers of infected individuals and variations 
in the degree of immune waning.

Cases per individual are a basic indicator of the harm 
the epidemic is doing. Tables 2 and 3 make clear that for 
simulations of equal length, the number of times an average 
individual contracts the disease responds strongly to the 
duration of immunity. Short durations of immunity result 
in many peaks within a 2000-day period, and each peak 
generates many new cases of disease. Immune waning also 
shortens the time interval between peaks and results in more 
cases. Both a short duration of immunity and a high degree 
of immune waning will also make a vaccine less practical. 
A high R0 also increases the case rate, but this effect does 
not seem to be as powerful as the duration of immunity. 
Therefore, if we want an epidemic that will do the least 
harm, we would desire one with a long period of immunity, 
low immune waning, and a low R0. 



www.innovationinfo.org

ISSN: 2581-7310 16

Citation: Kosinski RJ (2020) The Influence of the Duration of Immunity on a COVID-19 Epidemic: A Simulation Study. J Health Sci Dev Vol: 3, Issu: 2 (10-16).

To summarize, while these simulations omit much real-
world complexity, they make it clear that the duration 
of immunity, by itself, can have an important influence 
on the course of the an epidemic. Shorter durations of 
immunity are not effective in ending the epidemic, but cause 
oscillations in disease prevalence and increase the average 
case rate. Longer periods of immunity can successfully 
suppress the disease for long periods and lower the case 
rate, but are characterized by repeated outbreaks triggered 
by the expiration of immunity. Gradual waning of immunity 
increases the number of susceptibles and can markedly 
reduce the time period between outbreaks of the infection.

The duration of effective immunity is a key variable in 
the control of a COVID-19 epidemic.
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