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Abstract
We introduce a two-stage approach for 3D segmentation of 

5 abdominal organs in volumetric CT images. First, the relevant 
volume of interest for each organ is extracted as a bounding box. The 
obtained volume serves as input for a second step, in which two U-Net 
architectures of different dimensionalities are applied to reconstruct 
an organ segmentation as a label mask. The focus of this work is on 
the comparison of 2D U-Nets vs. 3D U-Nets counterparts. Overall, the 
results of our study show Dice improvements of at most 6%. Regarding 
computation time, to our surprise, the segmentation of liver and kidney 
was performed significantly faster by the GPU memory-saving 2D-U Nets. 
There were no significant differences for other major abdominal organs, 
but for all organs tested, we observe highly significant advantages for 
the 2D U-Net in terms of GPU computational effort.

Keywords: Organ bounds; U-Net; Architecture; Abdomen; 
Segmentation; 3D CT images.

Introduction
Steady progress in the field of deep learning and artificial intelligence 

is opening up previously unimagined possibilities for medical research. 
However, even with the increasing availability of publicly accessible 
databases, the automated just-in-time (JIT) segmentation of 3D patient 
organ models remains an unsolved challenge. As manual segmentation 
of abdominal organ structures in axial CT slices is a very time consuming 
task, automatic and JIT reconstruction procedures of 3D models are 
highly relevant for surgery planning and navigation.

Over the years, various Convolutional Neural Network (CNN) models 
for image segmentation have emerged, some of which differ greatly in 
memory requirements and the saving of computational power. In 2015, 
the 2D U-Net architecture showed promising results that outperformed 
conventional models on 2D biomedical segmentation problems and was 
also found to be effective on lower resolution images [1].  In contrast 
to the previously known CNN models, the U-Net concept uses down- 
and up-sampling steps to resample the condensed feature map to the 
original size of the input image. With the inclusion of higher resolution 
feature information in each up-sampling step, semantic segmentation of 
the input images can be accomplished efficiently by skip connections. 
In 2016, the resulting U-shaped architecture was extended to a 3D 
U-Net edition by Cicek et al. by replacing 2D operations with their 3D 
equivalents [2]. The primary focus in this paper is to address the question 
of whether the 3D U-Net is truly better suited for 3D data.

We expect that in Big Data studies, parallel segmentation of thousands 
of 3D volumetric images requires high computational time due to the 
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limited amount of processing nodes and sub-processes 
for parallel processing. We conjecture that 3D U-Nets 
will require even higher GPU computational and memory 
overhead for 3D image processing. In this work, we focus 
on proposing solutions with the lowest possible cost while 
maintaining or even improving segmentation quality. The 
goals of our approach can be summarized in three simple 
steps:

1. We detect and apply U-Nets to local sub-images for 
each task (liver, kidneys, spleen, pancreas).

2. We compare two U-Net architectures in terms of 
quality and GPU-performance when executing semantic 
segmentations.

3. We recommend the more suitable architectural 
model to the interested reader based on a detailed statistical 
analysis.

Finally, using an image database of 80 CT scans and 
their ground truth segmentations, the question whether the 
simpler 2D U-Net might perform better than the complex 
and theoretically more powerful 3D U-Net will be answered.

Particularly in the emerging field of visuo-haptic training 
and planning interventions using virtual reality (VR) 
techniques, fast and accurate 3D segmentation results are 
of utmost importance [3-6]. Time-variant 4D VR simulations 
with breathing simulation are readily available for training 
and planning of liver needle interventions [7-11]. A major 
obstacle remains the JIT and high-quality reconstruction of 
all required 3D models, i.e., abdominal organs in particular 
are rarely easy to segment. This is due to varying imaging 
conditions such as contrast agent administration, structure 
variations and noise.

In the literature, 3D U-Nets are often suggested to be 
more powerful [12-16]. However, there are some studies that 
highlight the advantages of 2D U-Nets in 3D segmentation 
tasks, such as [17-19]. Nemoto et al. find that 2D U-Nets with 
low computational complexity are effective and equivalent 
to 3D U-Nets for semantic lung segmentation, except for the 
trachea and bronchi [17].

A hybrid approach of 3D and 2D inputs for evaluating 
hemorrhage on CT scans of the head was proposed by Chang 
et al. [20]. This method was later adapted by Ushinsky et al., 
applying it to segmentation of the prostate in MRI images, 
demonstrating that 2D U-Nets are very effective for 3D 
data [19]. Christ et al. provided a slice-wise application of 
2D U-Nets for liver segmentation in combination with 3D 
random fields [21]. Similarly, Meine et al. proposed liver 
segmentation methods with the assistance of 3D, 2D and 
three fused 2D U-Net sectional (axial, coronal, sagittal) 
results in a 2.5D ensemble approach [18]. They find that the 
2.5D U-Net ensemble results are statistically superior for 
liver segmentation, especially for images with pathologies.

Other recent approaches aim to combine multiple stacked 
2D U-Nets and further improve information flow through 
semantic connections between different components 
[22,23]. The same concept has also been used in application 
areas such as colon polyp segmentation and face recognition 

[24,25]. Zwettler et al. have recently shown that extending 
datasets with synthesized slices can notably improve the 
results of 2D U-Nets applied on a small number of training 
datasets, indicating further potential for the 2D approach [26].

Regarding our 2D U-Net setup for the abdominal organs 
liver, spleen, kidneys and pancreas, we prefer axial slice 
training within the previously determined organ-specific 
VOIs. This results in significant savings in radiation dosage 
savings due to high scan pitch. Yet image resolution in axial 
CT slices is very high. New aspects in this work include the 
organ-specific VOI approach for the investigated organs 
such as liver, spleen, kidneys and pancreas. Finally, an 
organ-specific architecture dimensionality recommendation 
is given for each of the organs.

Materials and Methods
For the training and testing of our U-Nets, eighty CT scans 

and the corresponding labeled images were used, which can 
be found in various public sources1. Besides differences in 
image information in terms of quality, noise, and field of 
view, patient-specific volume representation also varied in 
the number of slices (64 to 861), pathologic lesions, slice 
width (1 to 5 mm), and contrast agent used.

The main problem concerning data annotation was the 
weakly contrasted pancreas organ in the CTs, which was not 
present in some image sets consisting of congruent intensity 
and label images from the public sources. We coped with 
that by four eye reviewed manual segmentation of this 
occasionally missing structure in the label maps. However, 
most organ reference segmentation were readily available 
in the public data sources.

Data preparation
To ensure a fair processing of the data, the orientation 

of images was changed to Right-Anterior-Inferior (RAI) 
and zero origin (0.0, 0.0, 0.0). Because CNNs are not able 
to natively interpret voxel spacings, an isotropic image 
resampling with 2.03 mm was performed as a compromise 
for varying xyz-distances (xy ≤ 2 mm, z ≤ 5 mm).

Our approach consists of two different machine learning 
techniques, bounding box detection using random regression 
forests (RRF) and U-Nets for semantic segmentation. After 
using the RRFs to detect the organ VOIs in the CT data, the 
U-Nets are applied to segment the organs contained in the 
VOIs.

Volume of interest detection
For the evaluation of this work, the ground truth of the 

corresponding organ VOI bounding box (BB) is required. 
It can be created by scanning the reference segmentation 
maps for labeled voxel coordinate extremes. To create a 
three-dimensional BB vector for each organ, we iterate in 
orthogonal slices through the organ’s label map for each 
coordinate direction (x, y, z) and store the extreme limits in 
a 6D BB vector that functions as ground truth BBs.

http://visceral.eu,
http://sliver07.org,
http://competitions.codalab.org/competitions/17094

http://visceral.eu
http://sliver07.org,
http://competitions.codalab.org/competitions/17094
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Alternatively, VOI-based organ extraction is readily 
available for organ-specific VOI detection of the organ 
ensemble (liver, still left kidney, right kidney, spleen, 
pancreas) [27-29]. This step also solves the FoV problem in 
the z-direction of the scanner, since CT scans cover variable 
body portions. Our currently studied scheme for learning 
bounding boxes of VOIs using RRFs is summarized below.

Training and application of random regression 
forests

We use Random Regression Forests (RRF) to determine 
the location and extent of abdominal organs [29]. As shown 
in figure 1, the RRF training step expects scans and ground 
truth VOIs as input.

A three-dimensional VOI bc of an organ c can be described 
by using a 6D vector  ( , , , , , )Left Right Anterior Posterior Head Foot

c c c c c c cb b b b b b b=  
with coordinates in mm [29]. To reduce the amount of data 
and speed up the algorithm runtime, only a fraction of the 
voxels in the scan is used for bounding box calculation. 
Starting from the scan center, we calculate the position of the 
voxels in each axis direction that are 15 mm away from the 
center, forming a cuboid box around the center. All voxels 
inside this area are part of the subset used for training and 
application of the algorithm.

Feature and offset vector calculation
Each voxel in the subset is assigned a feature and an 

offset vector. As described in eq. 1, the offset vector of a 
voxel  ( , , , , , )

min max min max min maxx x y y z zp p p p p p p= is the difference 

( ),  cd p c p b= −                                                                                                                                                (1)

between its position and the position cb of each of the 

six bounding box walls of the organ. Figure 2 shows this 
principle on the example of a kidney.

The feature vector of a voxel is derived from several 
feature boxes generated by traversing the voxels that are 
within a specified radial distance (r = 5 cm) from the scan 
medial axis. By computing the average intensities of all 
feature boxes obtained, the aim is to capture the spatial 
and intensity context around the voxel. Eq. 2 describes the 
calculation of a feature v            i;

( )
;;

1 .
p i

i
q Fp i

v J q
F ∈

= ∑                                                                                                                                                  (2)

;p iF represents the feature box of the ith feature, q 
indicates the points inside ;p iF and ( )J q determines the 
intensity at position q. The feature box is defined related to 
the current voxel. In contrast to Criminisi et al. [29], we use 
only 50 feature boxes, that are evenly distributed on three 
spheres (r = 5 cm, 2.5 cm, 1.25 cm). The input feature vector 
is finally composed of the mean intensities of the feature 
boxes. Figure 3 shows an example feature box, that was 
created in correlation to the selected voxel.

During the first step of our application scheme (figure 4, 
left), the RRF localizes the VOI for each individual organ as 
BB. Finally, the information of a detected VOI (intensities, 
labels) is resampled to 96x96(x96) for CNN input (figure 5).

Training and application of 2D and 3D U-Net 
architectures

In the second stage, as shown in the bird’s eye view in 
figure 4, right, the resulting VOI is passed to either a 2D [1] 
or a 3D U-Net for semantic labeling [2].

The training data for our U-Net is composed of the expert 
segmentations and ground truth bounding box interiors, as 
shown schematically in figures 6,4. The VOIs are then used 
to locally extract the intensity and label data from the CT 
scans. As input, a U-Net obtains a VOI from the intensity data, 
whereas the corresponding label data is linked to the output. 
We use slightly modified 2D and 3D U-Net architectures 
compared to Ronneberger et al. [1].

U-Net architecture overview
As can be seen in figure 5, our architecture consists of four 

down- and up-scaling steps that act as analysis and synthesis 
paths. Skip connections between the corresponding levels 
allow for the incorporation of additional information in the 
form of high-resolution features at each up-scaling step. 
Starting with the VOI input of size 96x96(x96), each down-
scaling step consists of two 3x3(x3) convolutions with a 
small dropout layer in between to prevent overfitting. Each 
step is then followed by a 2x2(x2) max-pooling layer until 
the final down-scaling step. In the up-scaling path, each step 
is introduced by a 2x2(x2) transposed convolution, which is 
then concatenated with the skip connection output from the 
corresponding down-scaling step. The last step is followed 
by a 1x1(x1) sigmoid activation function that provides the 
final segmentation result. For the 3D U-Net, an additional 
layer depth dimension is added while all other design 
elements are kept constant.

By using the data contained in a given VOI bounding box 

Figure 1: The inputs for the training process are CT scans and ground truth 
VOIs of a targeted pancreas. We create one feature vector and one mm offset 
vector for each voxel that is part of a predefined medial cylinder subset in the 
scan [29]. The trained RRF is able to predict the offset between a voxel and 
an organ’s VOI walls.
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loss function were used. A separate U-Net is trained for each 
organ, using a ReLU activation function.

Evaluation, metrics and statistics
To allow for a fair comparison, we use the same 64 

training images for both U-Nets in each iteration of the cross-
validation and perform testing with the same 16. In this way, 
we avoid data contamination due to separate training and 
test sets. The only difference between the U-Net architectures 
is the dimension of the input, output, and filter kernel layers. 
For 2D U-Nets, the input and output dimensions are 96x96 
and 2D filter kernels are applied in the layers. Respectively, 
for 3D U-Nets we have 96x96x96 inputs and outputs and 
apply 3D convolutions in the architecture layers.

A 5-fold randomized cross-validation using 4:1 splits was 
used. Five iterations yield 80 quality measures for each organ 
used in our statistics (table 1). This means that five new 
models for each organ are trained with randomly selected 
training data and used in the analysis. Figure 7 illustrates 
the partition of training and testing data. To focus solely on 
the influence of the U-Net dimensionality, the reference VOIs 
were used for the evaluation of this study. The Dice similarity 
coefficient was used as metric for the analysis:

2.
 

U G
DSC

U G
=

+
∩                  (3)

Where, U is the set of voxels from U-Net object 
segmentation and G is the set of ground truth voxels. A DSC 
value of 1 indicates perfect segmentation, a value close to 
0 implies poor segmentation. From the DSC results, we 
calculate means and standard deviations, medians and 
Inter-Quartile-Ranges (IQR) as measures of accuracy and 
precision. Statistical analyses with paired T-tests and 
Wilcoxon-Signed-Rank(WSR)-tests were performed using 
GNU-R 4.0.3. Finally, we recommend the dimensionality of 
the U-Net architecture based on accuracy, i.e. greater mean 
or median, and precision, i.e. smaller standard deviation or 
IQR and smaller number of outliers. We also keep in mind 
the relationship between quality and GPU overhead in time 
and memory.

Results
The qualitative liver results (figure 8) show that the 

2D U-Net (top) is superior with more uniform coverage of 
the segmentation area. The 3D U-Net (bottom) obviously 
suffers from under-segmentation as more brown ground 
truth surface is visible in figure 8 (bottom). With reference 
to table 1, the precision of the 2D U-Net is also higher due to 
the lower std. deviations and IQRs.

Regarding the kidney results, the 2D U-Net is highly 
significantly better in both T- and WSR-tests. The boxplots 
with a small x for the mean in figures 9, 10 visually confirm: 
the 2D U-Net is significantly better for liver and highly 
significantly better for kidneys (figures 9a, 10a, 9b, 10b).

For spleen segmentation, the 2D U-Net tends to have an 
advantage, as indicated in figures 9c, 10c and table 1.

The 3D U-Net has higher accuracy and precision for the 
low-contrast pancreas. The higher precision is reflected in 
smaller standard deviations and fewer outliers in table 1 

Figure 2: Offset vector between bounding box and voxel [29] on the example 
of a kidney. Left: Position of a bounding box around the kidney corresponding 
to the extreme values of the organ in each axis direction. Right: Position of 
a voxel p with the distance vectors d(p,c) to each of the bounding box sides.

Figure 3: Example of a feature box [29]: The feature box Fj corresponds 
to the current voxel p and calculates the mean value of a 3D image section. 
By sampling multiple feature boxes within a specified radius, the spatial 
environment of p can be described.

Figure 4: Bird’s eye perspective on our current segmentation concept with 
RRF for VOI detection and subsequent U-Net. Both training (green, red) 
and application (blue) concepts are shown. In this work, the right part with 
regards to the U-Nets is focused in the evaluation.

to segment the corresponding organ, the resulting output 
is a local segmentation map of the entire target organ in a 
probability range of 0 to 100%. The threshold for all organs 
except pancreas was chosen as 50%. For pancreas 30% was 
empirically found best.

The U-Nets were trained with batches of size 8 over 100 
epochs. In addition, Adam optimization and a cross entropy 
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DSCs:
Organ

Mean±Std. Median∼IQR
2D U-Net 3D U-Net 2D U-Net 3D U-Net

Liver 0.94±0.03* 0.93±0.04 0.95∼0.02** 0.94∼0.03
R. kidney 0.91±0.05*** 0.89±0.05 0.92∼0.03*** 0.90∼0.05
L. kidney 0.92±0.05*** 0.86±0.14 0.93∼0.03*** 0.89∼0.08
Spleen 0.93±0.04 0.92±0.04 0.94∼0.03 0.93∼0.03
Pancreas 0.57±0.19 0.59±0.15 0.60∼0.21 0.61∼0.21
We use statistical standard notation for found significances: *; **; ***: p<0.05; p <0.01; p <0.001 from T-tests (paired) and Wilcoxon-Signed-Rank-Tests on the 
right of the favorable U-Net result.
Table 1: Mean DSCs with standard deviations (Mean ± Std.) and Median DSCs with Inter-Quartile-Range (IQR) (Median~IQR) of 2D and 3D U-Nets from 5-fold 
randomized cross-validation experiments using 4:1 splits of the 80 images into training and test data.

GPU-Performance:

Organ

Memory Time
Training [MiB] Application [MiB] Training [min:sec] Application [sec]

2D U-Net 3D U-Net 2D U-Net 3D U-Net 2D U-Net 3D U-Net 2D U-Net 3D U-Net
Liver 1693 10957 1693 9117 9:26 10:07 1.47 3.18

R. kidney 1693 10957 1693 9117 9:28 10:07 0.40 0.55
L. kidney 1693 10957 1693 9117 9:26 10:07 0.40 0.55

Spleen 1693 10957 1693 9117 9:27 10:08 0.40 0.55

Pancreas 1693 10957 1693 9117 9:28 10:08 0.40 0.55
Mean±Std. 1693±0*** 10957±0 1693±0*** 9117±0 9:27±0:01*** 10:07±0:01 0.61±0.43 1.07±1.05

Median∼IQR 1693∼0*** 10957∼0 1693∼0*** 9117∼0 9:27∼0:01+ 10:07∼0:01 0.40∼0.003+ 0.55∼0.001
Mean Improvement 647.19% N/A 538.51% N/A 107.13% N/A 175.22% N/A

Median Improvement 647.19% N/A 538.51% N/A 107.07% N/A 137.10% N/A
1 MiB=1.048581024 MB=10242 bytes. We use statistical standard notation for found significances: +; *; **; ***:  p <0.10; p <0.05; p <0.01; p <0.001 from T-tests 
(paired) and Wilcoxon-Signed-Rank-Tests on the right of the favorable U-Net result.

Table 2: GPU-Performance table with memory consumption for training and application to the left and training and application times to the right.

Figure 5: Simplified overview of the U-Net architecture used for both the 
2D and 3D case. The input VOI of size 96x96(x96) is processed through four 
down- and up-scaling steps, resulting in a segmentation map of the same size 
as the input, containing organ pixels in the probability range from 0 to 100%. 
Applying a specified threshold leads to the final result.

Figure 6: The inputs to the training process are ground truth bounding boxes 
VOIs, CT scans and their corresponding segmentation maps. The box crops 
the CT- and segmentation data to extract the relevant image region. Inside the 
organ VOIs, the segmentation is learned. The process results in organ-wise 
training and application of U-Nets.

and figures 9d and 10d. In terms of accuracy measured by 
medians, the 3D U-Net has trend advantage of 0.02 over the 
2D U-Net, while precision measured by IQR is equal.

The GPU-Performance evaluation in table 2 shows the 
superiority of the 2D U-Net at the scale of this study with an 
80-image data base. The ratio of quality to GPU resources 
is always better for the 2D U-Net. In table 2 GPU memory 
saving is >6-fold in the training phase and >5-fold in the 
model application, trivially a highly significant result since 
there is no variation, i.e. no standard deviation and IQR. In 
terms of GPU calculation times measured during training, 
the 2D U-Net is exactly 40 seconds or 7% faster on average, 
again a highly significant average result. In the U-Net model 
application, we can observe a weakly significant ( p < 0.1) 
advantage for the 2D U-Net from 37% to 75%.
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Figure 7: 5-fold randomized cross-validation with 4:1 splits of 80 CT scans 
and their ground truth segmentations. Each subset consists of 16 CT volumes 
for the 3D case, corresponding to 1536 slices for each set of the 2D case. 
Training set (white) and test set (blue) are changed in every iteration, so that 
after five iterations each subset was once the test set.

(a) Liver (b) Left and right kidneys

(c) Spleen (d) Pancreas

Figure 9: Overview DSC boxplots: 3D (blue, green) and 2D U-Net (brown, 
purple) on the x-axis vs. DSCs on the y-axis: 2D U-Nets in favor for (a) liver 
and (b) kidneys (left k. and 3D U-Net: blue, left k. and 2D U-Net: brown; 
right k. and 3D U-Net: green, right k. and 2D U-Net: purple). (c) Spleen 
comes out with an edge for the 2D U-Net by trend. (d) Mixed results: 2D 
U-Net wins the accuracy contest, but loses the precision contest in terms of 
lower standard deviation (cf. tab. 1) and regarding less outliers for pancreas.
Legend for (a), (c) and (d): blue boxplots: 3D U-Net; red boxplots: 2D U-Net.

(a) Liver (b) Left and right kidneys

(c) Spleen (d) Pancreas

Figure 10: Zoomed DSC boxplots: 3D (blue, green) and 2D U-Net (brown, 
purple) on the x-axis vs. DSCs on the y-axis: 2D U-Nets in favor for (a) liver 
and (b) kidneys (left k. and 3D U-Net: blue, left k. and 2D U-Net: brown; 
right k. and 3D U-Net: green, right k. and 2D U-Net: purple). (c) Spleen 
comes out with an edge for the 2D U-Net by trend. (d) Mixed results: 2D 
U-Net wins the accuracy contest, but loses the precision contest in terms of 
lower standard deviation (cf. tab. 1) and regarding less outliers for pancreas.
Legend for (a), (c) and (d): blue boxplots: 3D U-Net; red boxplots: 2D U-Net.

Figure 8: Two liver segmentations (anterior view) with 2D U-Net (top) and 
3D U-Net (bottom). The coverage of the 2D U-Net result (top) appears more 
evenly distributed, i.e. more sensitive. Brown: Reference and purple: U-Net 
CNN. N.B., for the 2D model result on top, the oscillation pattern between 
reference (brown) and 2D CNN segmentation (purple) is much denser, 
showing better mean local quality.
Legend: reference (brown) and U-Net segmentation (purple)
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Conclusion
Surprisingly in this study, 2D U-Nets are favorable 

regarding the ratio of quality vs. computing costs.

The liver and spleen hold the greatest volume in our 
abdominal organ group. The liver and especially kidney 
competition is significantly won by the 2D U-Net ( p < 0.05). 
The liver is a difficult organ often with a variably filled 
stomach as a neighbor. 

Kidneys can be regarded as easy organs lighted by 
contrast agent and inside fatty tissue with low CT intensity.

A better posed training for the 2D U-Net could be the 
reason for the 2D U-Nets’ better results for liver and kidney 
tasks. A higher relative number training elements is used, i.e. 
axial slice pixels, vs. the number of net weights. The spleen 
results are in favor of the 2D U-Net regarding the mean and 
medians by trend. The 2D U-Net is also favorable for a less 
number of outliers (figure 9c).

The difficult pancreas does not provide many axial 
training slices useful for the 2D U-Net, as its elongation is 
not prominent on the z-axis. We suppose this is the reason, 
why and precision, i.e. higher mean and lower standard 
deviation and lower number of outliers (figure 9d). This win 
is supported by higher accuracy for the 3D U-Net in terms 
of medians. However, the race is not decided by significant 
differences making the 2D U-Net still very attractive 
for some users with GPU performance and memory 
concerns. Abdominal volumetric CT images and key organ 
segmentation were analyzed.

This new study shows interesting results from 
competing U-Net architectures, especially focusing different 
dimensionalities of net filter bank kernels and quality vs. 
GPU performance. The interested reader can now select a 
particular U-Net architecture, primarily whether to use a 
computational inexpensive design. Finally, in this study’s 
scope, a humble recommendation for the 3D U-Net could be 
given for the pancreatic organ in terms of better accuracy by 
trend and smaller standard deviation only. The IQRs as an 
alternative measure of precision are on par, and regarding 
the median the 3D U-Net wins just by a small trend. We co-
conclude, because of the deeper layering structure and thus 
more trainable weights, a 3D U-Net needs significantly more 
training data vs. possible overfitting to outpace 2D U-Nets. 

As training volumes are normalized to a square or 
cube of 96 voxels, the GPU memory consumption in table 
2 is always constant. Therefore, differences are trivially 
highly significant, as no varying results occur. We observe 
consistently lower memory consumption for 2D U-Nets. The 
memory effort in training is higher for the 3D U-Net including 
more space for administrative overhead data. Thus, 2D 
U-Nets can run on affordable 2-4 GB GPUs for 3D CT volume 
segmentation. 3D U-Nets definitely need currently totally 
overpriced 12 GB GPUs.

The timing measures in table 2 clearly speak out for the 
2D U-Net. Training is highly significantly 40 seconds or 7% 
faster on average using the 2D U-Net. However, regarding 
application, in the trained model prediction, the differences 

are not so striking with a weak significance by median. 37% 
to 75% improvement can be achieved, however in the range 
of one second, which is practically unimportant. 

As final and bold conclusion regarding our study design 
and results, we can recommend using the 3D U-Net subject 
to the amount of data we used here - for pancreas only. The 
conclusions are justified by statistically significant or by 
trend quality and GPU-computation performance results 
for all organs under study. We suppose, 3D U-Nets may 
overcome in quality when using several hundreds of training 
images. However, this comes approximately with an order of 
magnitude higher additional computational burden.

For the first time, an original and significant comparison 
of U-Net architecture dimension is provided to the reader 
focusing the key abdominal organs of liver, spleen, kidneys 
and pancreas. The reader can decide, which approach is 
appropriate for his concrete target organ, amount of training 
data and used GPU or cluster nodes, parallel process design, 
e.g. for atlas-based usage of U-Nets as encountered in multi-
classifier fusion [18].

Regarding the difficult pancreas with mixed DSC results 
in this study, we plan to train 2D U-Nets using a elongation 
optimized algorithm to provide slices oriented axially along 
its main central curve, to better reflect its orientation to 
generate more training slices for 2D U-Nets [30,31,11]. 
On the other hand, more training images shall be used to 
explore the 3D U-Nets’ theoretical advantage under better 
conditions, as we have discussed, for its training and 
application.

The scientific explanation of the U-Net methods is given 
al. and we lift these methods here to compare them [1,2]. 

The current limitations of this study will manifest 
as improvements in the future. Development will cover 
improved bounding box detection. At this state of our 
research, our current RRF bounding box detection would 
confound the core message of this paper, the aim of which 
was to focus purely on U-Net performances.
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