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Abstract
In this paper, we investigate briefly the appropriateness of the widely 

used logistic growth curve modeling with focus on COVID-19 spread, from 
a data-driven perspective. Specifically, we suggest the Gumbel growth 
model for behaviour of COVID-19 cases in several countries in addition 
to the United States of America (US), for better detecting the growth and 
prediction. We provide a suitable fit and predict the growth of cases for 
some selected countries as illustration. Our contribution will stimulate 
the correct growth spread modeling for this pandemic outbreak.
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 Graphical Abstract
Highlights

Exploring logistic curve modeling for COVID-19 data and illustrating 
the shortcomings.

Proposing the modeling of COVID-19 spread with the Gumbel growth 
curve.

Fitting of COVID-19 data from different countries to strongly support 
the Gumbel model choice.

Keywords: Asymmetric; Logistic growth model; Non-linear 
regression; Prediction.

Introduction
Nowadays, the Coronavirus pandemic, known as COVID-19, caused 

by a novel pathogen named Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV2), has shown that in early stages of infection, 
symptoms of severe acute respiratory infection can occur and it is 
rapidly spreading across the globe. Since we have limited knowledge 
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commonly used logistic curve modeling. A logistic function is 
a common sigmoid curve with the following functional form 
for the dynamic model of population at time 𝑡

( )  ( ) 1  t t

LP t
e α− −=

+
                 (1)

with initial condition 𝑃(𝑡𝑜) = 𝑃𝑜, 𝐿 is the carrying 
capacity, the maximum capacity of the environment here, 𝛼 
> 0. Here, Eq. (1) divided by 𝐿 corresponds to the cumulative 
distribution function (CDF) of a logistic distribution at point 
𝑡. The probability density function (PDF) is simply obtained 
by differentiating the latter with respect to 𝑡.

This is useful because the difference of two Gumbel-
distributed random variables has a logistic distribution. The 
seemingly exponential growth of COVID-19 cases across the 
globe is typically the lower half of a logistic curve during the 
early stage.

Results and discussion-Logistic model: The analysis is 
data-driven, and therefore, the focus of the paper is not from 
an epidemiological perspective. Nevertheless, the parameter 
estimates are relatable to the real world. 𝐿 represents how 
many cases we expect to see in the end, 𝛼 is how quickly the 
virus has spread/cleared and 𝑡𝑜 is where the peak increase 
in cases was observed. To illustrate the failing of the logistic 
model, the US data was the focus here.

Modeling the US cases, based on data until 28 March, the 
following results were obtained for regression. The model 
was highly significant with a p-value less than 0.0001 and 
this is shown in the plot as well, where the actual US data and 
the model are almost indistinguishable. This data suggests 
the total number of COVID-19 cases will be approximately 
between 226,000 and 265,000. The number of cases for the 
next 7 weeks was forecasted using these estimates. However, 
when data until 4 April is subsequently used, parameter 𝐿, 
which represents the final number of cases (477922) is far 
beyond what was predicted using data until the previous 
week (upper bound for the

confidence limit of a was 265206). The slope parameter, 
𝛼, decreased while the location parameter, 𝑡𝑜 increased. 
(Figures 1,2 and Tables 1,2,3).

Using data until 2020-04-25, the new estimate for 𝐿
once again exceeds what was predicted using previous data 
and the slope parameter, 𝛼, decreased while the location 
parameter, 𝑡𝑜 increased. (Figure 3)

Modelling the cumulative cases can be viewed as trying 
to model the forest as a whole, as opposed to looking at each 
tree. Even if a particular tree is twice as tall as most other 
trees in the forest, it will not make a big impact on the whole 
when all the heights are summed up. Therefore, to introduce 
more variability to the data, the next approach was to analyse 
the daily new cases instead, by taking the difference of the 
cumulative data. This way, the magnitude of daily cases will 
not be reduced as more data is acquired, and it will capture 
the effect of large spikes. In other words, we are zooming 
into the data to give more weight to the daily number of 
cases.

The parameter estimates below are based on the same 

about COVID-19, epidemiological modeling is still under 
development and modeling the ecological growth based 
on the population demographic information is feasible for 
reporting. It is to support the shaping of decisions around 
different non-pharmaceutical interventions.

The logistic function/curve is commonly used for 
dynamic modeling in many branches of science including 
chemistry, physics, material science, forestry, disease 
progression, sociology, etc. But, the question is whether 
it is also suitable for COVID-19 spread modeling from the 
available data viewpoint. The principle of exponential 
growth can be applied to the transmission of COVID-19 (see 
Little, for a web based dashboard [1]). It is known that the 
exponential model is adequate to describe for a short period 
and in general it will quickly deviate from actual numbers 
as time passes. The logistic growth curve was successful in 
modeling some epidemics [2-6]. Our primary goal is to see 
whether the logistic function can suitably predict the spread. 
Some endeavors have been made to predict and forecast 
the future trajectory of the COVID-19 outbreak. We refer 
to Cohen, Bastista, Roser et al., Hsu, Anastassopoulou et al., 
Maier and Brockmann, Cassaro and Pires, Ceylan, Salehi et 
al, Sauer and Petropoulos and Makridakis to mention a few 
related studies [7-17].

In none of the above mentioned studies, the Gumbel 
function is applied for predicting the growth of COVID-19. 
Hence, in this contribution, a dynamic Gumbel model is used 
to track the coronavirus COVID-19 outbreak. We organize 
the rest of this work as follows. In the forthcoming section, we 
provide the source of data and software used for comparison 
and fitting purposes. Section 5 includes the analysis of logistic 
modeling, outlines the shortcomings, proposes the Gumbel 
model as the suitable candidate; followed by comparison 
with the Logistic model. Section 7 illustrates the potential of 
the Gumbel model with the analysis of the COVID-19 data for 
selected countries. We conclude our contribution in Section 8.

Experimental data
There are a number of sources on the web that provide 

data on COVID-19 cases. One such site is “The Humanitarian 
Data Exchange” and one can find daily cumulative cases of 
COVID-19 per country. (https://data.humdata.org/dataset/
novel-coronavirus-2019-ncov-cases) has a downloadable 
“time_series_covid19_confirmed_global.csv” starting from 
2020-01-22, and for some countries, it even has the data 
broken down into different states or provinces. In order to 
perform the desired analysis, daily cases for each country 
had to be obtained, but some countries, such as the US and 
Australia, had the data broken down to state or provincial 
level. Since the focus of this research was per country, R 
open source software was used to sum along the unique 
values of Country, appropriately transforming the data for 
our analysis, then and non-linear regression was performed 
using the nls function.

Methodology and Results
Preliminary insight by using the logistic growth 
model

In this section, we conduct data analysis using the 

https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Logistic_distribution
https://en.wikipedia.org/wiki/Logistic_distribution
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Figure 1: Observed US cases from 2020-01-22 to 03-28 and forecast for 7 weeks, using logistic function.

 

 

 

 

 
Figure 2:  Observed US cases from 2020-01-22 to 04-04 and forecast for 7 weeks, using logistic function.

 

 

 

 

Figure 3: Observed US cases from 2020-01-22 to 04-25 and forecast for 7 weeks, using logistic function.
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Parameter Estimate Approx Standard Error Approx 95% Confidence Limits
𝐿 245898 9653.8 226590 265206
𝛼 0.3098 0.00483 0.3001 0.3195
𝑡𝑜 67.1124 0.2341 66.6442 67.5806

Table 1: US- logistic function based parameter estimates from 2020-01-22 to 03-28.

Parameter Estimate Approx Standard Error Approx 95% Confidence Limits
𝐿 477922 13319.9 451282 504562
𝛼 0.2403 0.00405 0.2322 0.2484
𝑡𝑜 71.7055 0.2409 71.2236 72.1874

Table 2: US- logistic function based parameter estimates from 2020-01-22 to 04-04.

Parameter Estimate Approx Standard Error Approx 95% Confidence Limits
𝐿 995370 14689.3 966196 1024544
𝛼 0.1459 0.00321 0.1395 0.1523
𝑡𝑜 80.3266 0.2772 79.7761 80.8772

Table 3: US- logistic function based parameter estimates from 2020-01-22 to 04-25.

data as the one above. The p-value for the model was still 
<0.0001, suggesting that its significance was not lost in the 
new approach. One observation was lost in the process of 
taking the difference, but by looking at the daily cases and 
trying to fit a PDF instead of a CDF, we can get a much 
detailed view of the situation, and it has increased the 
estimate for the total number of cases. See figure 4; the view 
by focusing on daily case modelling using the first derivative 
of the logistic function (Table 4). 

Shortcomings: In using a sigmoid function to model 
the data, an implicit assumption was made that it will take 
the same length of time for the spread of virus to “rise” as 
it will to “fall.” This comes from the fact that the Logistic 
function is symmetrical about the inflection point. The bar 
charts (Figure 5) show the daily new cases for Spain, Italy 
and the US. Just looking at the charts below is enough to 
question whether trying to fit a symmetrical shaped curve 
will provide a good fit or predictability. Hence the next step 
was to find a distribution whose CDF appears to have the 
general “S” shape which has the characteristics of a sigmoid 

function, yet possesses some skewness built into it such that 
when modelling the daily new cases, it fits the asymmetrical 
data well. After looking at numerous distributions that 
meet all criteria, the Gumbel distribution seemed to possess 
promising properties.

Figure 6 suggests how easily our eyes can deceive us. The 
red lines (CDF and PDF) are the Logistic distribution and the 
blue lines (CDF and PDF) are the Gumbel distribution. (The 
dashed lines are the PDF and the solid lines are the CDF.) If 
we were to just view the CDFs in isolation, there is no way that 
a human will be able to tell whether the curve is symmetric 
or not. Even with the x and y axis drawn, merely shifting the 
Gumbel CDF to the left slightly will be enough to fool the 
viewer that the distribution is convincingly symmetric. On 
the other hand, detecting symmetry (or lack thereof) using 
a PDF is visually clear, and it does not require an expert to 
determine that while the dashed red curve (of the Logistic 
function) is symmetric, the dashed blue curve (of Gumbel) 
is not. Hence looking at the daily data and detecting this 
skewness was crucial in suggesting an alternative model.

 

 

 

 

 Figure 4: Observed daily US cases from 2020-01-22 to 04-25 and forecast for 7 weeks, using logistic function’s derivative.
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Figure 5: Bar chart of Daily new cases in Spain, Italy and the US (extracted from https://www.worldometers.info/coronavirus/country/us/).

https://www.worldometers.info/coronavirus/country/us/
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Gumbel growth modeling
The Gumbel distribution has been frequently used for 

practical probabilistic modeling. Gumbel (Anderson and 
Daniewicz, Gomez et al., Hyun et al., Huang et al.) presents 
a model as an extension of the exponential distribution with 
the feature that it can be used to fit extreme datasets [18-
21]. A Gumbel dynamic model of population at time 𝑡 is 
defined by

( )
at te

P t Ae β
−

−
=                   (2)

with initial condition 𝑃(𝑡𝑜) = 𝑃𝑜, 𝐴 is the carrying 
capacity, the maximum capacity of the environment here, 𝛽 
> 0. Here, Eq. (2) divided by 𝐿 corresponds to the CDF of the 
Gumbel distribution at point 𝑡. The PDF is simply obtained by 
differentiating the latter with respect to 𝑡.

Overall, the same process as the logistic function was 
performed with the Gumbel distribution’s PDF and CDF. The 
results indicate that using Gumbel is strongly preferred over 
the logistic, regardless of whether the Gumbel PDF (daily) or 
CDF (cumulative) is used. The parameter estimates for the 
total number of cases are no longer caught up within a week 
and even visually, the trajectory of the graph suggests paths 
for each country that are smoother and more accommodating 
towards future outcomes.

Regarding the parameter estimates, while the roles of 
“𝐴” and “𝑡𝑜” are analogous to those of “𝐿” and “𝑡𝑜” from the 
logistic function, respectively, the parameter “beta” plays a 
somewhat different role- as a slope/duration dual-function 
parameter which shrinks or stretches the curve. The Gumbel 
model incorporates some level of skewness which allows it to 
pick up broader variation in the data. Note that the standard 

errors are larger for the PDF

based estimates, which is to be expected since it uses the 
volatile daily data as opposed to rather-stable cumulative 
data .(Tables 5,6 and Figure 7)

Comparison and Discussion
The following plots (Figure 8) summarise the key 

difference in using Gumbel distribution over Logistic 
distribution for the modelling of COVID-19 infection cases. 
The data used here is the number of cases in the US until 
2020-04-25, where the circles represent the number of 
cumulative cases. The left panel shows the different models 
based on the Logistic function and the right panel shows 
the different models based on the Gumbel distribution’s 
CDF. The different lines indicate how many weeks’ worth of 
observations have been left out to simulate the results that 
were obtained in the past. On the left panel, it is clear that 
the Logistic model fails to capture an important trait in the 
data, hence it fails to keep up with the data. This is, as argued 
above, due to the asymmetric nature of the data. On the right 
panel, however, the Gumbel model is much more robust in 
picking up such trends. Though the prediction from 3 weeks 
ago has overestimated the number of cases, thereafter the 
estimates have remained rather stable and appear to be 
converging for the past 2 weeks.

Gumbel Modelling for Some Selected Countries
In this section, we analyse the dynamics of the 

coronavirus disease COVID-19 for some selected countries 
to show the potential of the Gumbel model (Figure 9). 
The time frame window is from 2019-12-31 to 2020-10-
12, except for Turkey (from 2020-03-12) and Peru (from 

 
 Figure 6: PDF and CDF of Logistic distribution and Gumbel distribution.
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Figure 7: Observed daily US cases from 2020-01-22 to 04-25 and forecast for 7 weeks, using Gumbel PDF.

  
 

 
Figure 8: US- Logistic function (left panel) and Gumbel PDF (right panel) based forecasts from 2020-01-22 to 04-04 (3), 04-11 (2), 04-18 (1) and 04-25 (0).

2020-02-28). Additionally, only the Gumbel PDF model ran 
without singularity or iteration issues with some countries, 
which is also evidence that speaks to its robustness. Further, 
for practical purposes, we provided a month prediction for 
November given in table 7.

Conclusion
In this paper, we have investigated the logistic growth 

model. The shortcomings were shown. We guided the 
reader to the solution of the use of the Gumbel model as 
an appropriate choice and completed the prediction for 

several countries. As Panovska-Griffiths pointed out one 
model cannot answer all the questions [22]. We hope this 
contribution can be a part of the set of solutions. The authors 
hope that this model will be of assistance for decision 
makers. This paper is part of an ongoing project related to 
modeling and prediction of COVID-19 spread.
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 Figure 9: Logistic CDF, Gumbel CDF and PDF based forecasts from 2020-03-12 (Turkey), 2020-02-28(Peru), 2019- 12-31(all other countries) to 2020-10-12, 
for selected countries.
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Parameter Estimate Approx Standard Error Approx 95% Confidence Limits
𝐿 1254903 47672.7 1160207 1349599
𝛼 0.1076 0.00493 0.0978 0.1174
𝑡𝑜 83.4375 0.5791 82.2871 84.5879

Table 4: US- logistic function’s derivative based parameter estimates from 2020-01-22 to 04-25.

Parameter Estimate Approx Standard Error Approx 95% Confidence Limits
𝐴 1485959 50413.7 1385819 1586100
𝛽 16.7931 0.6251 15.5514 18.0349
𝑡𝑜 82.1391 0.5729 81.0010 83.2771

Table 5: US- Gumbel PDF based parameter estimates.

Parameter Estimate Approx Standard Error Approx 95% Confidence Limits
𝐿 1315121 14613.8 1286097 1344146
𝛼 14.8945 0.1874 14.5224 15.2666
𝑡𝑜 79.8614 0.1936 79.4769 80.2458

Table 6: US- Gumbel CDF based parameter estimates.

Date Italy Spain Germany France Norway Turkey Iran China

1-Nov-2020 1132 6118 2182 30934 121 1316 1011 0

2-Nov-2020 1114 5995 2188 31531 120 1305 998 0

3-Nov-2020 1095 5874 2195 32133 120 1294 986 0

4-Nov-2020 1076 5755 2201 32738 119 1283 973 0

5-Nov-2020 1058 5636 2206 33347 119 1272 961 0

6-Nov-2020 1040 5519 2212 33959 118 1261 949 0

7-Nov-2020 1021 5403 2217 34575 118 1249 937 0

8-Nov-2020 1003 5288 2222 35193 117 1238 925 0

9-Nov-2020 985 5175 2226 35815 116 1227 913 0

10-Nov-2020 967 5064 2231 36439 116 1215 902 0

11-Nov-2020 949 4953 2235 37066 115 1204 890 0

12-Nov-2020 931 4845 2239 37696 114 1192 879 0

13-Nov-2020 914 4738 2242 38327 114 1181 867 0

14-Nov-2020 896 4633 2246 38961 113 1169 856 0

15-Nov-2020 879 4529 2249 39597 112 1158 845 0

16-Nov-2020 862 4427 2252 40235 111 1146 834 0

17-Nov-2020 845 4326 2254 40874 111 1135 823 0

18-Nov-2020 829 4227 2257 41514 110 1123 813 0

19-Nov-2020 812 4130 2259 42156 109 1111 802 0

20-Nov-2020 796 4035 2261 42799 108 1100 792 0

21-Nov-2020 780 3941 2262 43443 107 1088 781 0

22-Nov-2020 764 3849 2264 44088 107 1077 771 0

23-Nov-2020 748 3758 2265 44733 106 1065 761 0

24-Nov-2020 732 3669 2265 45379 105 1054 751 0

25-Nov-2020 717 3582 2266 46024 104 1043 741 0

26-Nov-2020 702 3497 2267 46670 103 1031 731 0
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Date South Korea Canada Australia New Zealand India Qatar Japan Peru

1-Nov-2020 2 2526.641 3 0 70744 12 94 2141

2-Nov-2020 2 2556.059 3 0 70223 11 90 2090

3-Nov-2020 2 2585.1 3 0 69697 11 86 2039

4-Nov-2020 2 2613.751 3 0 69166 10 83 1990

5-Nov-2020 1 2641.999 3 0 68631 10 80 1942

6-Nov-2020 1 2669.835 2 0 68091 10 76 1894

7-Nov-2020 1 2697.245 2 0 67547 9 73 1848

8-Nov-2020 1 2724.221 2 0 66999 9 70 1803

9-Nov-2020 1 2750.752 2 0 66448 9 68 1758

10-Nov-2020 1 2776.827 2 0 65894 8 65 1715

11-Nov-2020 1 2802.437 2 0 65337 8 62 1672

12-Nov-2020 1 2827.574 2 0 64778 8 60 1631

13-Nov-2020 1 2852.229 2 0 64216 7 57 1590

14-Nov-2020 1 2876.394 1 0 63652 7 55 1550

15-Nov-2020 1 2900.06 1 0 63086 7 53 1512

16-Nov-2020 1 2923.221 1 0 62518 7 51 1474

17-Nov-2020 1 2945.869 1 0 61949 6 49 1437

18-Nov-2020 0 2967.999 1 0 61379 6 47 1401

19-Nov-2020 0 2989.603 1 0 60808 6 45 1365

20-Nov-2020 0 3010.677 1 0 60237 6 43 1331

21-Nov-2020 0 3031.215 1 0 59665 5 41 1297

22-Nov-2020 0 3051.212 1 0 59092 5 40 1264

23-Nov-2020 0 3070.663 1 0 58520 5 38 1232

24-Nov-2020 0 3089.565 1 0 57948 5 37 1200

25-Nov-2020 0 3107.914 1 0 57376 5 35 1170

26-Nov-2020 0 3125.707 1 0 56804 5 34 1140

27-Nov-2020 0 3142.94 1 0 56233 4 32 1110

28-Nov-2020 0 3159.612 1 0 55663 4 31 1082

29-Nov-2020 0 3175.719 1 0 55094 4 30 1054

30-Nov-2020 0 3191.261 1 0 54527 4 28 1027

Table 7: Predictions for November 2020.
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