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Abstract
A new framework in quantum chemistry has been proposed recently 

(“An approach to first principles electronic structure calculation by 
symbolic-numeric computation” by A. Kikuchi). It is based on the 
modern technique of computational algebraic geometry, viz. the 
symbolic computation of polynomial systems. Although this framework 
belongs to molecular orbital theory, it fully adopts the symbolic method. 
The analytic integrals in the secular equations are approximated by the 
polynomials. The indeterminate variables of polynomials represent 
the wave-functions and other parameters for the optimization, such as 
atomic positions and contraction coefficients of atomic orbitals. Then 
the symbolic computation digests and decomposes the polynomials into 
a tame form of the set of equations, to which numerical computations 
are easily applied. The key technique is Gröbner basis theory, by 
which one can investigate the electronic structure by unraveling the 
entangled relations of the involved variables. In this article, at first, we 
demonstrate the featured result of this new theory. Next, we expound 
the mathematical basics concerning computational algebraic geometry, 
which are necessitated in our study. We will see how highly abstract ideas 
of polynomial algebra would be applied to the solution of the definite 
problems in quantum mechanics. We solve simple problems in “quantum 
chemistry in algebraic variety” by means of algebraic approach. Finally, 
we review several topics related to polynomial computation, whereby 
we shall have an outlook for the future direction of the research.

Keywords: Quantum mechanics, Algebraic geometry, Commutative 
algebra, Grönber basis, Primary ideal decomposition, Eigenvalue problem 
in quantum mechanics, Molecular orbital theory; Quantum chemistry, 
Quantum chemistry in algebraic variety, First principles electronic 
structure calculation, Symbolic computation, symbolic-numeric solving, 
Hartree-Fock theory, Taylor series, Polynomial approximation, Algebraic 
molecular orbital theory.

Introduction
Dear Readers,

If you are researchers or students with the expertise of physics or 
chemistry, you might have heard of “algebraic geometry” or “commutative 
algebra”. Maybe you might have heard only of these words, and you might 
not have definite ideas about them, because these topics are taught in 
the department of mathematics, not in those of physics and chemistry. 
You might have heard of advanced regions of theoretical physics, such as 
super-string theory, matrix model, etc., where the researchers are seeking 
the secret of the universe by means of esoteric theories of mathematics 
with the motto algebraic geometry and quantum mechanics. And you 
might be desperate in imagining the required endurance to arrive at the 
foremost front of the study... However, algebraic geometry is originated 
from rather a primitive region of mathematics. In fact, it is an extension 
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of analytic geometry which you must have learned in high-
schools. According to Encyclopedia Britannica, the definition 
of the word goes as follows:

algebraic geometry, study of the geometric properties 
of solutions of polynomial equations, including solutions in 
three dimensions beyond three...

It simply asserts that algebraic geometry is the study of 
polynomial systems. And polynomial is ubiquitous in every 
branch of physics. If you attend the lecture of elementary 
quantum mechanics, or you study quantum chemistry, you 
always encounter secular equations in order to compute 
the energy spectrum. Such equations are actually given by 
the polynomial systems, although you solve them through 
linear algebra. Indeed, linear algebra is so powerful that you 
have almost forgotten that you are laboring with polynomial 
algebraic equations.

Be courageous! Let us have a small tour in the sea of 
QUANTUM MECHANICS with the chart of ALGEBRAIC 
GEOMETRY. Your voyage shall never be in stormy and 
misty mare incognitum. Having chartered a cruise ship, 
the “COMMUTATIVE ALGEBRA”, we sail from a celebrated 
seaport named “MOLECULAR ORBITAL THEORY”.

The molecular orbital theory [1] in the electronic structure 
computation of quantum chemistry is computed by the 
solution of the secular equation, if one adopts the localized 
atomic orbital basis { }iφ  defined on the set of atoms at the 
positions { }iR  with other optimizable variables { }iζ :

{ } { }( ) { } { }( )H , S , ,i j i jR E Rζ ζ⋅Ψ = ⋅Ψ

in which the matrix elements are defined by

H ,φ φ= ∫ij i jdr 

and

S .ij i jdrφ φ= ∫
In these expressions,  is the Hamiltonian; the vector 

Ψ represents the coefficients in LCAO wave-function
i iχ φΨ =∑ ; E is the energy spectrum. The Fock matrix H and 

the overlap matrix S are, in theory, computed symbolically 
and represented by the analytic formulas with respect to 
the atomic coordinates and other parameters included in 
the Gaussian- or Slater- type localized atomic basis; they 
are, in practice, given numerically and the equation is solved 
by means of linear algebra. In contrast to this practice, it is 
demonstrated by Kikuchi [2] that there is a possibility of 
symbolic-numeric computation of molecular orbital theory, 
which can go without linear algebra: the secular equation 
is given by the analytic form and approximated by the 
polynomial system, which is processed by the computational 
algebraic geometry. The symbolic computation reconstructs 
and decomposes the polynomial equations into a more 
tractable and simpler form, by which the numerical solution 
of the polynomial equation is applied for the purpose of 
obtaining the quantum eigenstates. The key technique is 

the Gröbner basis theory and triangulation of polynomial 
set. Let us review the exemplary computation of hydrogen 
molecule in [2].

Let iφ , aZ , aR  be the wavefunctions, the atomic charges, 
and the atomic positions. The total energy functional of 
Hartree-Fock theory is given by

2
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The secular equation is derived from the stationary 
condition with respect to the wave-function

0.
i

δ
δφ
Ω
=

The energy minimum with respect to the atomic 
coordinate gives the stable structure:

Let us consider the simple hydrogen, as in Figure 1.

Assume that the two hydrogen atoms are placed at AR  
and BR . By the simplest model, we can choose the trial 
wave-functions for up-and down-spin at the point 3z∈ as 
follows:

( ) ( ) ( )( )up
1 exp exp

 

A Bz a z b zφ
π

= − + −

( ) ( ) ( )( )down
1 exp expA Bz c z d zφ
π

= − + −

Where

/ /A B A Bz z R= −

and , , ,a b c d are the real variables to be determined. Let  
ev and ew to be Lagrange multipliers ijλ  for up φ  and downφ . Since 
these two wave-functions are orthogonal in nature, due to 
the difference of spin, we assume that the multipliers are 

H       H
Figure 1: The image of a hydrogen molecule, composed of two atoms.
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diagonal: 0ijλ =  for i j≠ .

From these expressions, all of the integrals involved 
in the energy functional are analytically computed. (As 
for the analytic forms of the integrals, see the supplement 
of [2].) Then, with respect to inter-atomic distance ABR , 
Taylor expansion of the energy functional is computed up 
to degree four, at the center of 7 / 5ABR = . The polynomial 
approximation is given by

OMEGA = (3571 - 1580*a^2 - 3075*a*b - 1580*b^2 - 
1580*c^2

+ 625*a^2*c^2 + 1243*a*b*c^2 + 620*b^2*c^2 - 
3075*c*d 

+ 1243*a^2*c*d + 2506*a*b*c*d + 1243*b^2*c*d - 
1580*d^2 

..........................................................................................................

..........................................................................................................

..........................................................................................................

- 86*a*b*c*d*r^4 - 17*b^2*c*d*r^4 + 12*d^2*r^4 - 
4*a^2*d^2*r^4 

- 17*a*b*d^2*r^4 + 13*a*b*ev*r^4 + 13*c*d*ew*r^4)/1000

where the inter-atomic distance ABR  is represented by r 
(for the convenience of polynomial processing).

The equations used in the study are quite lengthy, so we 
only show the part of them. We give the exact ones in the 
appendix (supplementary material): the energy functional 
in Appendix A; the secular equations in Appendix B; the 
Gröbner bases in Appendix C; the triangulation in Appendix D.

In order to reduce the computational cost, the numerical 
coefficients are represented by the fraction, by the truncation 
of decimal numbers. We make the change of variables from 
 , , ,a b c d to , , ,s t u v in the following way:

, , ,a t s b t s c u v d u v= + = − = + = −

Consequently, the wave-functions are represented by the 
sum of symmetric and anti-symmetric parts:

( ) ( ) ( )( )

( ) ( )( )

up exp exp

exp exp

A B

A B

tz z z

s z z

φ
π

π

= − + −

+ − − −

( ) ( )( )

( ) ( )( )

down exp exp( )

exp exp

A B

A B

uz z z

v z z

φ
π

π

= − + −

+ − − −

The stationary conditions a
δ
δ
Ω , c

δ
δ
Ω

, c
δ
δ
Ω

, d
δ
δ
Ω

, with respect to 
t, s, u, v, yields those equations:

S[1]32*s*u*v*r^4-336*s*u*v*r^3+992*s*u*v*r^2-160*s*u*v*r

.......................................................

+126*t*r^4-882*t*r^3+1748*t*r^2+1896*t*r-

12470*t=0

S[2]156*s*u^2*r^4-1068*s*u^2*r^3+2248*s*u^2*r^2-
80*s*u^2*r

.......................................................

+992*t*u*v*r^2-160*t*u*v*r+40*t*u*v=0

S[3]156*s^2*u*r^4-1068*s^2*u*r^3+2248*s^2*u*r^2-
80*s^2*u*r

.......................................................

+126*u*r^4-882*u*r^3+1748*u*r^2+1896*u*r-
12470*u=0

S[4]-52*s^2*v*r^4+236*s^2*v*r^3-32*s^2*v*r^2-
104*s^2*v*r

.......................................................

-30*v*r^4+330*v*r^3-1148*v*r^2+760*v*r-170*v=0

The stationary conditions ev
δ
δ
Ω , ew

δ
δ
Ω , with respect to , 

, are the normalization condition for the wave-functions. 
They yield two equations:

S[5]-13*s^2*r^4+139*s^2*r^3-458*s^2*r^2+63*s^2*r

.......................................................

-63*t^2*r-3986*t^2+1000=0

S[6]13*u^2*r^4-139*u^2*r^3+458*u^2*r^2-63*u^2*r

.......................................................

+63*v^2*r-14*v^2+1000=0

The stable condition for the molecular geometry r
δ
δ
Ω  

yields this:

312*s^2*u^2*r^3-1602*s^2*u^2*r^2+2248*s^2*u^2*r

.......................................................

.......................................................

+380*v^2+740*r^3-3903*r^2+7288*r-5102=0

For simplicity, however, we replace the last equation with 
a simple one (of the fixed inter-atomic distance) as follows:

S[7] 5*r-7=0.

It fixes the inter-atomic distance at 1.4.
By processing polynomials S[1],...,S[7], We obtain 18 

polynomials in the Grönber basis J[1],...,J[18]. We only 
show the skeletons of them, because the coefficients are too 
lengthy. The exact form is given in the appendix.

J[1]=r-1.4

J[2]=(...)*ew^6+(...)*ew^5+(...)*ew^4

 +(...)*ew^3+(...)*ew^2+(...)*ew+(...)

J[3]=(...)*ev+(...)*ew^5+(...)*ew^4+(...)*ew^3

 -(...)*ew^2-(...)*ew+(...)

J[4]=(...)*v*ew^4+(...)*v*ew^3+(...)*v*ew^2

 -(...)*v*ew-(...)*v
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J[5]=(...)*v^2-(...)*ew^5-(...)*ew^4-(...)*ew^3

 -(...)*ew^2+(...)*ew-(...)

J[6]=(...)*u*ew^4+(...)*u*ew^3+(...)*u*ew^2

 +(...)*u*ew+(...)*u

J[7]=(...)*u*v*ew^2+(...)*u*v*ew+(...)*u*v

J[8]=(...)*u^2+(...)*ew^5+(...)*ew^4+(...)*ew^3

 +(...)*ew^2-(...)*ew-(...)

J[9]=(...)*t*ew^4+(...)*t*ew^3+(...)*t*ew^2

 +(...)*t*ew+(...)*t

J[10]=(...)*t*v*ew^3+(...)*t*v*ew^2+(...)*t*v*ew+(...)*t*v

J[11]=(...)*t*u*ew^3+(...)*t*u*ew^2+(...)*t*u*ew+(...)*t*u

J[12]=(...)*t^2-(...)*ew^5-(...)*ew^4-(...)*ew^3

 +(...)*ew^2+(...)*ew-(...)

J[13]=(...)*s*ew^2+(...)*s*ew-(...)

*s-(...)*t*u*v*ew-(...)*t*u*v

J[14]=(...)*s*v*ew-(...)*s*v-t*u*ew^2-(...)*t*u*ew-(...)*t*u

J[15]=(...)*s*u*ew+(...)*s*u+(...)*t*v*ew^2

+(...)*t*v*ew+(...)*t*v

J[16]=(...)*s*u*v+(...)*t*ew^3+(...)*t*ew^2

+(...)*t*ew+(...)*t

J[17]=(...)*s*t-(...)*u*v*ew-(...)*u*v

J[18]=(...)*s^2+(...)*ew^5+(...)*ew^4+(...)*ew^3

 -(...)*ew^2-(...)*ew-(...)

The triangular decomposition to the Gröbner basis is 
computed, which contains five decomposed sets of equations 
T[1],..., T[5]. Here the only the skeleton is presented, while 
the details are given in the appendix. Observe that one 
decomposed set includes seven entries; from the first entry 
to the last, the seven variables are added one by one, with the 
order of r, ew, ev, v, u, t, s, in the arrangement of a triangle. 
Now we can solve the equation by determining the unknown 
variables one by one. As a result, the triangular decomposition 
yields four subsets of the solutions of equations: the possible 
electronic configurations are exhausted, as is shown in Table 1.

T[1]:

_[1]=r-1.4

_[2]=(...)*ew+(...) 

_[3]=(...)*ev+(...)

_[4]=v 

_[5]=(...)*u^2-(...)

_[6]=t

_[7]=(...)*s^2-(...)

T[2]:

_[1]=r-1.4

_[2]=ew-(...)

_[3]=ev-(...)

 _[4]=v^2-(...)

_[5]=u

_[6]=t

 _[7]=(...)*s^2-(...)

T[3]:

_[1]=r-1.4 

_[2]=ew^2+(...)*ew+(...)

_[3]=ev-ew 

_[4]=v^2-(...)*ew-(...)

_[5]=u^2+(...)*ew+(...)

_[6]=t^2+(...)*ew+(...)

_[7]=s+(...)*t*u*v*ew+(...)*t*u*v

T[4]:

_[1]=r-1.4

_[2]=ew+(...)

_[3]=ev+(...)

_[4]=v

_[5]=u^2-(...)

_[6]=t^2-(...)

_[7]=s

T[5]:

_[1]=r-1.4

_[2]=ew+(...)

_[3]=ev+(...)

_[4]=v^2-(...)

_[5]=u

_[6]=t^2-(...)

_[7]=s

Solution 1 Solution 2 Solution 3 Solution 4
t -0.53391 0.00000 -0.53391 0.00000
s 0.00000 -1.42566 0.00000 -1.42566
u -0.53391 -0.53391 0.00000 0.00000
v 0.00000 0.00000 -1.42566 -1.42566
ev -0.62075 -0.01567 -0.62734 0.01884
ew -0.62075 -0.62734 -0.01567 0.01884
r 1.40000 1.40000 1.40000 1.40000

The total energy -1.09624 -0.49115 -0.49115 0.15503
electron 1 symmetric asymmetric symmetric asymmetric
electron 2 symmetric symmetric asymmetric asymmetric

Table 1: This table shows the solutions for the secular equation after the 
triangulation. The electron 1 and 2 lie in the up- and down- spin respectively; 
and the result exhausts the possible four congurations of the ground and the 
excited states.
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This is one of the featured results in [2]. The author of that 
work had demonstrated the procedure of the computation 
in a factual way, but he had not explained the underlying 
mathematical theory so minutely. Consequently, it is 
beneficial for us to grasp some prerequisites of commutative 
algebra and algebraic geometry because these theories are 
still strange to a greater part of physicists and chemists. In 
the following sections, we review concepts of commutative 
algebra and algebraic geometry, which are utilized in this 
sort of computation. Next, we learn about Grönbner bases. 
We will find that the “primary ideal decomposition” in 
commutative algebra surrogate the eigenvalue problem of 
linear algebra. Then we apply our knowledge to solve simple 
problems of molecular orbital theory from the standpoint of 
polynomial algebra. In the end, we take a look at the related 
topics which shall enrich the molecular orbital theory 
with a taste of polynomial algebra, such as “polynomial 
optimization” and “quantifier elimination”. The employment 
of these methods will show the course of future studies.

Basics of Commutative Algebra and Algebraic 
Geometry

Our handy tool is polynomial and our chief concern is 
how to solve the set of polynomial equations. Such topics 
are the themes of commutative algebra. If we would like 
to do with geometrical view, the task lies also in algebraic 
geometry. From this reason, in this section, we shall review 
mathematical definitions and examples related to the theory 
of polynomials.

N. B.: The readers should keep in mind that the chosen 
topics are mere “thumbnails” to the concepts of profound 
mathematics. As for proofs, the readers should study from 
more rigorous sources; for instance, for commutative 
algebra, the book by Eisenbud [3] or the Book by Reid [4]; 
for algebraic geometry, the book by Perrin [5], for Gröbner 
bases, the works by Cox, Little, and O’Shea [6,7], the book by 
Becker and Weispfenning [8], or the book by Ene and and 
Herzog [9].

Polynomial and ring
A polynomial should be defined in a ring. A ring is 

composed by the coefficient (in some field) and the 
indeterminate variables. Let K be the coefficient field. The 
polynomial ring [ ]1 2, ,..., nS K x x x= is the K-vector space, with 
the basis elements (monomials) of the form

1 2
1 2 .... ( X )ncc c c

nx x x =

with ic ∈ . The polynomial is represented by a
af C X=∑

and we use the notation sup ( ) {X 0}a
af C= ≠ . We define the 

degree of a monomial 1 2
1 2X .... ncc cC

nx x x=  by

1
X

n
C

i
i

c
=

=∑

The degree of polynomial is given by

deg( ) max{ X : X supp( )}C cf f= ∈

A homogeneous polynomial is a polynomial, in which 
every non-zero monomial has the same degree.

Example 4.1
3 2 2 3x x y x y y+ + + is a homogeneous polynomial of 

degree 3.
3 2 2x x y z+ + is not homogeneous.

Example 4.2 (Homogenization) A non-homogeneous 
polynomial ( )1,..., nP x x is homogenized by means of an 
additional variable 0x .

For 
3 2 2

3 3 2 2( , , , )
        = + + = + +                 

h x y y zP t x y z t x x y z t
t t t t

,

Ideal
Definition 4.1 An ideal  I in the polynomial ring S is the set 
of polynomials, which is closed under these operation:

1i I∈ and 2i I∈ then 1 2i i I+ ∈

1i I∈ and Sα ∈ then i Iα ⋅ ∈ .

We usually denote an ideal by the generators, such as 
( ) ,  I x y= or ( )2 2 ,J x y xy= + .

The sum and the product of the ideals are defined by

{ : and }I J f g f I g J+ = + ∈ ∈

{ . : and }IJ f g f I g J= ∈ ∈

The ideal quotient is defined to be the ideal

: { : . for all }= ∈ ∈ ∈I J f S f g I g J
For two ideals I and m, the saturation is defined by

1

: :
∞

∞

=

=


i

i

I m I m .

(Observe that : :iI m I m⊂ for i < j. In many cases, we 
do not have to consider the union of infinite number of 
ideal quotients, as the extension by union with : iI m shall 
“saturates” and stop to grow at some finite i, if the ring is 
Noetherian, as will be discussed later.)

The radical of an ideal I is defined by

{ : for someinteger k 0}kI f S f I= ∈ ∈ >

Affine algebraic set (Affine algebraic variety)
Definition 4.2. Let S be the subset of a ring [ ]1 ,..., nk x x . We 
denote the common zeros of polynomials ( )1,..., nP x x in S by

1( ) { ( ,...., ) such that ( ) 0}n
nV S x k P x x S P x= ∈ ∀ ∈ =

We call ( )V S the affine algebraic set (or affine variety) 
defined by S

Example 4.3 In [ ],X Y , ( ) { }2 2 1V X Y X Y+ = = ± − .

Example 4.4 In [ ],X Y , 2 2( ) 0.V X Y X Y+ = = =

Example 4.5 In [ ]1 2, ,..., nk x x x , { }( )1V =∅ .

Example 4.6 In [ ]1 2, ,..., nk x x x , { }( )0 nV k= .

Also, these properties of the affine algebraic set are 
notable.
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•	 If A B⊂ , ( ) ( )V B V A⊂ .

•	 A point ( )1 ,..., na a a= is an affine algebraic set: 
( ) ( )1,..., nV a x a x a= − −

•	 If ( )1 2, ,..., nI f f f=  then

( ) ( ) ( )1 ... nV I V f V f= ∩ ∩

•	 The intersection of affine algebraic sets is also an affine 
algebraic set:

( )j j
J i

V S V S 
=  

 
 

Or

( ) ( ) ( ) ( )V I V J V IJ V I J∪ = = ∩ .

•	 The finite union of affine algebraic sets is also an affine 
algebraic set:

( ) ( ) ( ) ( )V I V J V IJ V I J∪ = = ∩ .

The interpretation of the saturation :I J ∞  in algebraic 
geometry is this: the saturation is the closure (in the sense of 
topology) of the complement of ( )V J in ( )V I .

Definition 4.3 Let V be a subset of nk  (where K is an 
arbitrary field). The ideal of V is defined as

( ) [ ] ( ){ }1 x ,..., x , 0= ∈ ∀ ∈ =nI V f k x V f x|

In other words, ( )I V is the set of polynomial functions 
which vanish on V .

Example 4.7 ( ) [ ]1,..., nI k X X∅ = .

Example 4.8 For the ideal

( )( )2 3 2 ,I x y x= −

the saturation is given by

( )2 3: ( )I x x y∞ = − .

2 3x y= is the composure of the curve 2 3x y=  and the 
doubled line 0x = . The saturation : ( )I x ∞ removes the 
line 0x = from that composure; the point ( ) ( ), 0,0x y =  
(which lies on 0x = ), however, is not removed, because the 
saturation is the closure.

The ideal of an affine algebraic set of a ideal I, denoted by
( )( )I V J , is computable.

Example 4.9 For ( ) [ ]2 2, ,J Y Y X Y= ⊂  , ( ) ( ){ }0,0V J =
and ( )( ) ( ),I V J X Y= . Observe that the ( )( )I V J J≠ . This 
is the consequence of the famous theorem of Hilbert 
(Nullstellensatz), which we will learn later.

Residue class ring or quotient ring
We can define “residue class rings”. Let I R⊂  be an ideal in 

a ring R, and f is an element in R. The set { }:f I f h h I+ = + ∈
is “the residue class of f modulo I”; f is a representative of 
the residue class f I+ . We denote the set of residue classes 
modulo I by /R I . It also has the ring structure through 
addition and multiplication.

Several resources use the term “quotient ring” or “factor 
ring” for the same mathematical object.

In general, an ideal depicts geometric objects, which 
might be discrete points or might be connected and lie in 
several dimensions. They are represented by the residue 
class ring:

[ ]1 2, ,..., /nk x x x I .

Let us see several examples.

Example 4.10 [ ] ( )2/ 2x x −  The elements in the ring [ ]R x  

are the polynomial ( ) 0 1
n

nf x a a x a x= + + . We divide ( )f x  by
2 2x − , so that

( ) ( ) ( )2
0 1 2f x b b x g x x= + + ⋅ −

The residue 0 1b b x+ is the representative of ( )f x when it 
is mapped into the residue class ring. We might assume that 
x  (the representative of x in the residue class ring) would 

not be an undetermined variable, but a certain number α
(outside of ) such that 2 2α = .

Example 4.11 [ ] ( )2 2, / 1x y x y+ − .

We assume that the representatives x  and y  of x
and y in the residue class ring would not be undetermined 
variables, but a pair of numbersα and β such that 

2 2 1α β+ = , and that ( ),x y  depicts a unit circle, as a one-
dimensional geometric object in 2 .

Example 4.12

[ ] ( )2 2, / 1,x y x y x y+ − −

The representative x  and y  of x and y are considered 
to the points or ( )1/ 2,1/ 2  (which lie in the intersection of 

2 2 1x y+ =  and x y= ). This example is a simplest case of 
zero-dimensional ideal.

Prime and primary ideal
There are two fundamental types of ideal: prime ideal 

and primary ideal.

Definition 4.4 An ideal I (⊂ R ) is prime, if I R≠ , and, if 
xy I∈ , then x I∈  or y∈ I.

Definition 4.5 An ideal I is primary, if I R≠ , and, if xy I∈ , then 
x I∈ or ny I∈ for some 0n > ; that is to say, every zero 

divisor of /R I is nil-potent.

Example 2.13 ( ) [ ]x x⊂  is a prime ideal.

Example 4.14 P= ( ) [ ]2 2, , ,x xy y x y⊂   is a primary ideal: x
and are zero divisors in /R P ; 2x P∈ and 2y p∈ .

Example 4.15 Every prime ideal p is primary.

In the affine algebraic set, these two properties are 
equivalent.

•	 Ideal I is a prime ideal.

•	 ( )V I is irreducible.
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The correspondence between variety and ideal
In order to unify the algebraic and geometric views, let 

us review the correspondence between varieties and ideals.

There are correspondences:

[ ]{ }1Ideals of , {Subsets of },…
n

nV Xx x kk
and

[ ]{ }1Idea{Subs ls ofets of  , ,} …


n
nX k I k x x

where the ideal ( )I X and the variety ( )V J are defined in 
the previous sections.

Also there are one-to-one correspondences:

[ ]{ } { }

[ ]{ } { }

1

1

Radical ideals of ,..., Varieties 

Prime ideals of ,..., Irreducible varieties .

n
n

n
n

k x x X k

k x x X k

↔ ⊂

↔ ⊂
∪ ∪

Example 4.16 For the ideal ( ) [ ]2I x x= ⊂  , ( )J x= . We 
have ( ) ( )V I V I= .

Example 4.17 For the non-prime ideal ( ) [ ]I xy x= ⊂  ,
( ) ( ) ( )V I V x V y= ∪ .

When we compute or analyze ( )V I for an ideal I , it might 
be convenient for us to work with ( )V I or its irreducible 
component ( )iV p because the defining ideal would be 
simpler. The principle of “divide and conquer” is equally 
effective in symbolic computation.

Noetherian ring
Definition 4.6 A ring is Noetherian when it is finitely 
generated.

This means that there is no infinite ascending sequence of 
ideals: if there is an ascending sequence of ideals, such that

1 1 1... ...k k kI I I I− +⊆ ⊆ ⊆ ⊆ ⊆

it terminates somewhere in the following sense:

1n nI I += = .

Example 4.18 [ ]1 2, ,..., nx x x and [ ]1 2, ,..., nx x x are Noeterian 
rings. If there is a computational process in these rings 
which would create the ascending sequence of ideals, it must 
terminate after finite number of steps.

Example 4.19 If R is a Noetherian ring, then [ ]R X is 
Noetherian (as the consequence of the Hilbert basis theorem) 
[3]. By induction, [ ]1,..., nR X X is also a Noetherian ring.

Example 4.20 The power series ring [ ]R x   is a Noetherian 
ring.

Example 4.21 If R is a Noetherian ring and I is a two-sided 
ideal (such that for a R∈ , aI I⊂ and Ia I⊂ ), then the 
residue class ring is /R I also Noetherian. In other words, the 
image of a surjective ring homomorphism of a Noetherian 
ring is Noetherian.

Dimension and Krull dimension
Let X be a topological space. The dimension of X is the 

maximum of the lengths of the chains of irreducible closed 

subsets of X. The chain is the relation of inclusion as this:

0 1 ... nX X X  
We have seen that for a prime ideal P, the affine algebraic 

set ( )V P is an irreducible closed subset. Hence we define a 
kind of dimension related to prime ideals. For a prime ideal
p , we can construct the chain of prime ideals with length n 

of the form

0 1 ... np p p p=   .

with prime ideals 0p ,..., np . The chain is not necessarily 
unique, and we denote the maximum of the length of chains 
by height ( p ). The Krull dimension of a ring A is the 
maximal length of the possible chains of prime ideals in A . We 
denote it by dimk(A)

Recall that for two prime ideals such that p q⊂ ,
( ) ( )V p V q⊃ ; the inclusion is reversed.

Example 4.22 We have dimk ℝ[x_1,x_2,...,x_n]=n, 
because the maximal chain of primes ideals is given by

( ) ( ) ( ) ( )1 1 2 1 20 , ... , ,..., nx x x x x x⊂ ⊂ ⊂ ⊂ .

One often refers to the Krull dimension of the residue 
class ring /R I  by “dimension of the ideal I”. The smallest 
prime ideal 0p  ideal is I itself (when I is prime) or a minimal 

0p  including I (as one might study a non-prime ideal I), and 
the dimension counting ascends from 0p

 as the start-point.

Example 4.23 Consider ( )I xy= in [ ],R x y=  . This ideal is not 
prime. In order to count the dimension of the ideal I , the 
chain of primes is given by ( ) ( ),x x y⊂  or ( ) ( ),y x y⊂ , since 
( )x  and ( )y  are the minimal prime ideals over ( )xy . Hence 
dim( ) 1=R I .

Example 4.24 Let f be a polynomial in the ring S of dimension 
n, (say, [ ]1 2, ,..., nx x x ). We assume that f is not the zero divisor, 
i.e. there is no element g S∈ such that 0g f⋅ = and that it is 
not invertible, namely, there is no element g S∈  such that

1g f⋅ = . Then ( )/R f  
has dimension n-1. A simple example is 

[ ] ( ), /x y x y− , which is the line defined by the equation y x= .

These examples seem to be trivial but demand us a certain 
amount of technical proof to show the validity of the 
statements. (See the argument in [5].)

Zero-dimensional ideal
As we have seen, an ideal I in a ring R[x1,x2,...,xn]is defined 
by the set of polynomials. The points (x1,x2,...,xn)∈R, which 
are the zero of the generating polynomials, determine the 
affine algebraic set V(I). If the affine algebraic set V(I) is a 
discrete set, the ideal I is said to be “zero-dimensional”. If we 
have to solve the set of polynomials, we have to work with 
the zero-dimensional ideal, where we shall find the solution 
as the discrete set of points. It is fairly difficult to find the 
zero-set for general cases. Hence it is important to foresee 
whether an ideal is zero-dimensional or not. The criterion 
for an ideal to be zero-dimensional is given by Gröbner basis 
theory, which we shall see later.

Nullstellensatz
Assume that k is an algebracally closed field.

Theorem 4.1 Weak Nullstellensatz Let I ⊂ k [x1,...xn] be an 
ideal (different from k [x1,...xn] itself), then V(I) is nonempty.
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Theorem 4.2 (Nullstellensatz) Let I ⊂ k [x1,...xn], then 
I(V(I))=√I.

Spectrum of ring and Zariski topology
As the set of polynomials define the geometric objects, 

we can adopt a view of geometry. In this section, we see a 
bit of it.

We say that a variety is irreducible when it is not empty 
and not the union of two proper sub-varieties, namely,

1 2 1 2 1 2 for and  or  X X X X X X X X X∪= ⇒ = = .

For a prime ideal P in a ring S, V(P) is irreducible.

For a ring A, we define the ring spectrum by

Spec(A) = {prime ideals of A}

For A=K [x1,...xn]/J there is a one-to-one correspondence 
between Spec( A ) and irreducible sub-varieties of V(J).

( ) ( )Spec {irreducible sub-varities }.↔A V J

Every maximal ideal (hence being prime) in A=K [x1,...xn]/I 
with an algebraically closed field K (such as ) and an ideal 
I has the form

( )1,..., nx a x a− −

for some point(a1,...,an) ∈ V(I). (Notice that, in case of I= (0), 
V(I)=Kn. Hence there is a one-to-one correspondence

( ) m-SpecV J ↔

by means of

( ) ( )1 1,..., ,...,n nx a x a a a− − ↔ .

The Zariski topology of a variety X is defined by assuming 
that the sub-varieties Y ⊂ X are the closed sets, whereby 
the union and the intersection of a family of variety are also 
closed sets. For an algebraically closed field K, these two 
statements are valid.

(i) Any decreasing chain V1⊃V2⊃... of varieties in Kn 

eventually terminates.

(ii) Hence any non-empty set in Kn has a minimal element.

A variety which satisfies the descending chain condition 
for closed subsets is called to be Noetherian. Observe that 
the chain for the Noetherian varieties is descending, while 
the chain for the ideals is ascending when we have defined 
the Noetherian ring.

We define another type of topology in Spec(A): the Zariski 
topology of Spec(A), in which the closed sets are of the form

( ) { Spec ( ) }V I P A P I= ∈ ⊃

Two types of Zariski topology for varieties and Spec(A) 
have similar properties. The comparison is given in Chapter 5 
of the book of Reid [4].

Unique factorization domain

Definition 4.7 An integral domain is a non-zero commutative 
ring in which the product of any two non-zero elements is 
non-zero. 

Example 4.25 [ ]1,..., nx x and [ ]1,..., nx x are integral domains.

Definition 4.8 A unique factorization domain (UFD) is an 
integral domain in which any nonzero element has a unique 
factorization by the irreducible elements in the ring.

Example 4.26  is a UFD.

Example 4.27 For a field F, F [x] is a UFD.

Example 4.28 For a UFD R, R[x] is a UFD. By induction, 
[ ]1,..., nR x x is a UFD.

By the last example, [ ]1,..., nx x and [ ]1,..., mx x are UFDs. 
Hence any polynomial in these rings has unique factorization. 
However there are a lot of example which is not a unique 
factorization domain.

Example 4.29 [ ] ( ), , , /R X Y Z W XY ZW− is not a UFD, since 
it permits two different factorization for one element:
a XY ZW= = .

Completion: formal description of Taylor expansion
In the computation of molecular orbital theory through 

computer algebra, as is presented in the introduction, we 
approximate the energy function by polynomials. We simply 
replace the transcendental functions in the energy functional 
(such as ( )exp Ax or ( )erf Bx  with the corresponding formal 
power series, and we truncate these series at the certain 
degree. For this purpose, we execute Taylor expansion for 
the variable at a certain center point in the atomic distance. 
If we increase the maximum degree in Taylor expansion 
toward the infinity, the computation would converge to that 
by the exact analytic energy functional. Such a circumstance 
could be represented in a formal language of mathematics.

We need several definitions in order to present the 
formal description of Taylor expansion.

For a ring S, a “filtration” by the powers of a proper ideal 
I would be written as follows:

( ) ( ) ( )0 1 2: : :n nF S S F S I F S F S I= ⊃ = ⊃ ⊃ ⊃ = ⊃ 

The sequence is given by the inclusion relation. The 
filtration determines the Krull topology of I-adic topology.

An “inverse system” is a set of algebraic objects ( )j j JA ∈ , which 
is directed by the index J with an order≤ . In the inverse 
system, we have a family of map (homomorphism),

: j i
ijf A A→  for all i ≤ j

between two objects, from the larger index  to the 
smaller i. The map satisfies

1iif =

and

ik ij jkf f fο=  i ≤ j ≤ k

Let ( )1 2, , , nI x x x= … and ( )1 2, , , nI x x x= … . The ( ):i iF S I= is 
the ideal in R, generated by the monomials of degree i in S. We 
also assume that the inclusion is given in the sense of ideal 
so that ideals generated by monomials of lower degrees 
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should contain those generated by monomials of higher 
degrees. We set / i

iA S F S= by the quotient rings. Hence the 
entries in / i

iA S F S= are the finite polynomials, in which the 
monomials in iF S are nullified, and iA  are represented by 
the set of polynomials up to degree 1i − . The operation of the 
map from / jS F S to / iS F S is to drop the monomials of higher 
degrees and to shorten polynomials. In case of the polynomial 
approximation by means of Taylor expansion, the map is the 
projection from finer to coarser approximations.

The inverse system can be glued together as a 
mathematical construction, which is called the “inverse 
limit” (or “projective limit”). The inverse limit is denoted and 
defined as

lim {( ) ( ) }i j i i ij j
j J

A A a j J A a f a for all i j
∈

= = ∈ ∈ = ≤∏

The inverse limit A has the natural projection : iA Aπ →
(by which we can extract iA ).

The inverse limit is a “completion” of the ring 
[ ]1 2, , , nS x x x= … with respect to ( )1 2, , , nI x x x= … , when the 

inverse limit is taken for the quotient rings in the following 
way:

( )limˆ / n
IS S I S=


.
ˆ

IS  is the ring of formal power series [ ]1 2, , , nR x x x …  , and 
we can arbitrarily approximate the formal power series by 
some finite polynomials through the natural projection.

Example 4.30 Consider ( )exp x . Let [ ]S x=   and ( )I x=
. jFS is the set of polynomials of the form ( ).jx f x
The Taylor expansion ( )exp x up to degree 1j − , 

( ) ( )( )2 11 1 / 2 1 / 1 ! jx x j x −+ + + − , lies in / jF FS . In the 
inverse limit of iA , namely, [ ]x   , the formal power series 
of ( )exp x , ( ) ( )21 1/ 2 1/ ! nx x n x+ + + + + 

 is defined.

We can assume the formal power series in [ ]1 2, , , nR x x x … 
would represent the inverse limit of “glued” Taylor 
expansions. In the algebraic formulation of molecular 
orbital theory, by means of inverse limit, we can bundle the 
different level of polynomial approximation with respect to 
the maximum polynomial degrees. Hence the natural map  
means the model selection.

Such a mathematical formality might appear only to 
complicate the matter in practice, but it is important to 
introduce a neat “topology” in theory. The topology is 
constructed as follows: an object (i.e. a polynomial)  in a 
ring  has the nested (or concentrated) neighborhoods in S
; the open basis of the neighborhoods is generated by the 
powers of a proper ideal I S⊂ and represented as

forx I S x S+ ∈

We say “open basis” in the sense of topology. If the reader 
is unfamiliar with topology, simply image that polynomials 
around a polynomial x are sieved into different classes, 
which are represented by the above form. The powers of 
the ideal I serve as the indicator of the distance between 
polynomials. In the terminology of topology, the completion 
makes a “complete” topological space. If we consider the 
inverse system for Taylor expansions at a point X , the 

formal neighborhoods of X should be small enough so that 
Taylor series should be convergent.

Example 4.31 Consider the map from [ ] [ ]/ +n jx x x   to 
[ ] [ ]/ jx x x  and the corresponding inverse system. Now 

[ ]S x=  and ( ) [ ]i iF S x x=  . A polynomial f in [ ]x  has the open 
basis of neighborhoods, which is given by the set of the form

[ ]nf x x+  .

The extension to the multivariate case in [ ]1 2, , , nx x x…
is straightforward.

We interpret the neighborhoods of 0  in the slightly 
different view. Any polynomial has the image in each of
[ ] [ ]/ jx x x  . Hence there are the different classes of 

polynomials around 0 , which are represented by nil-potent 
ε as follows,

2{0 such that 0}aε ε+ =
2 3

1 1{0 such that 0}a aε ε ε+ + =

likewise,
n 1

1
1

{0 such that 0}
n

i

i
a ε ε +

=

+ =∑
and so on. In other words, the choice of the neighborhoods 

of 0 is to choose the tolerable threshold, above which the 
monomials are admittedly zero.

Localization
Let [ ]1,..., nR x x=  be a ring of polynomial functions. We 

can consider the rational function (or the fraction)

( )
( )

f X
g X

for ,f g R∈ . This sort of fraction is determined locally 
on a subset X in n , such that ( ) 0g X ≠ . For a fixed point

( )1,..., na a a X= ∈ , we define the subset S of R such that

( ) [ ] ( )1{ ,..., | 0}nS p a R x x p a= ∈ ≠

Then, for the pair in (a,s), denoted (a,s), the fraction /a s
can be well-defined, although it is a “local function”. The 
set of fractions must be closed under multiplication and 
addition. Moreover the equivalence relation between two 
pairs in R S× is given by

( ) ( ), ', ' ' ' 0.a s a s as a s≡ ⇔ − =

In commutative algebra, “localization” is defined in a 
more general way.

Definition 4.9 Let R  be a ring.

A subset S R⊂ is “multiplicatively closed” if 1 S∈ and 
ab S∈ for all ,a b S∈ .

For R and its multiplicatively closed subset S, the 
equivalence relation between two elements in RxS is given 
by

( ) ( ) ( ), ', ' there is an element such that ' ' 0a s a s u S u as a s⇔ ∈ − =

Then the set of equivalence classes
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1 : ,aS R a R s S
s

−  
= ∈ ∈ 
 

is the localization of at R the multiplicatively closed subset 
S. It is a ring with addition and multiplication,

' ' '
' '

a a as a s
s s ss

+
+ =

and

' '
' '

a a aa
s s ss
⋅ = .

Example 4.32 Let P be a prime ideal in a ring R. As the 
set \S R P= is multiplicatively closed, we localize R  by 
S. It is usually denoted by PR  and called the localization 
of R at the prime ideal P. This localization has the exactly 
one maximum ideal PPR . In particular, for [ ]1,..., nR x x=   and 

{ }( ) 0for a point nP f R f a a= ∈ = ∈ , PR  is the set of rational 
functions well defined around a .

Example 4.33 Let R  be a commutative ring and let f be 
a non-nilpotent element in R . A multiplicatively closed 
subset S is given by{ | 0,1,...}nf n = . The localization

[ ] ( )( )1 1/ 1S R R t ft R f− − = − =   .

Example 4.34 Let ( )X V xy= (an affine algebraic set defined 
by the ideal( )xy ). Consider the ring ( ) [ ] ( ), /A X x y xy=  . For a 
point ( )1,0a = in x -axis, the function y is equal to zero. So 

/1y and 0 /1 should be equivalent as the elements in ( 1)S R−

with ( ){ | 0}S f R f a= ∈ ≠ . Indeed x S∈  and ( )1 0 1 0x y xy⋅ − ⋅ = =

in ( )A X , although ( )1 0 1 0y y⋅ − ⋅ = ≠  in [ ],x y . Hence the 
equivalence between /1y  and 0 /1 is proved. (This argument 
is not valid for ( )0,0a = , because 0x = at that point and it is 
not in S .)

Example 4.35 Consider the secular equation

0 1
1 0

x x
e

y y
−    

=    −    
.

The roots are given by ( ) ( ) ( ) ( ), , , , 1 , , ,1 , 0,0,0x y e t t t t= − −

, and they lie in the affine algebraic set ( )V I  by the ideal 
( ),I x ey y ex= + + in [ ],R x y=  . Let ( ), , 1P x y e= +  and \S R P= . Since 

I is represented by another basis set (by a Gröbner basis 
with lexicographic order x y e> > ) as

( )( )2 1 ,I y e x ey= − +

it follows that

( )( )1 1 ,I S R y e x ey−⋅ = + +
because 1e −  is not in P  and it is an invertible element in 

( 1)S R− . The ideal 1I S R−⋅  describes “how the affine algebraic set 
( )V I  looks like” locally around the point ( ) ( ), , 0,0, 1x y e = − . Indeed, 

the eigenvalue e  is the root of the determinant 2 1 0e − = and 
the parabola 2 1f e= −  looks like ( )2 1g e= +  locally around

1e = − .

Integrality
Consider the extension of quotient ring

[ ] [ ]2 1 1,... / ,... /n nR K x x I S K x x I= ⊂ =

We say 1 1x x I S= + ∈ is integral over R  when it satisfies 
the following condition:

Definition 4.10 Let R S⊂ be a ring extension. An element 
s S∈  is integral over R if it satisfies a monic polynomial 
equation

1
1 0d d

ds a s a−+ + + =

with ia R∈  for all 1,...,i d= .

If every element in S  is integral over R , then S  is 
integral over R . We say that S is the integral extension of R .

Then these statements hold:

If 1,..., ms s S∈ are integral over R , [ ]1,..., mR s s is integral 
over R .

The succession of integral extensions makes the integral 
extension. If S  is integral over R and T is integral over S, then 
is T integral over.

Example 4.36 [ ] [ ] ( ), / 1y x y xy→ −  is not an integral 
extension. From the geometrical viewpoint, the 
correspondence by this map (by inverting the direction) 
gives us the projection of the hyperbola 1xy =  to y -axis. 
There is no point in 1xy = which is projected to the point 

0y =  in y -axis, while any other points in y -axis have a 
preimage in 1xy = .

Example 4.37 Apply the change of coordinates to the 
above example: x t→  and y t s→ + . Then we obtain
[ ] [ ] ( )2, / 1s t s t ts→ + −  , which is an integral extension. From 

the geometrical viewpoint, the correspondence between 
two rings gives us the projection to the hyperbola ( ) 1t t s+ =

to t -axis. One always finds two points in ( ) 1t t s+ = , namely, 
( )( )( )21/ 2 4 ,s s s± + , which are projected to an arbitrary point s in 

s-axis. The change of coordinates with polynomial maps of 
this sort (which might be non-linear) enables us to obtain an 
integral extension of a ring, even if the domain of the map is 
not an integral extension (Noether-normalization) [2].

Example 4.38 Consider the ideal ( ) [ ], , ,I x ey y ex x y e= + + ⊂  . 
I represents a simple secular equation

0 1
1 0

x x
e

y y
−    

=    −    
.

[ ] [ ], , , /x y e x y I→   is not an integral extension. In fact, I
can be represented by another basis ( )2 ,y ye x ye− + + , but there 
is no monic equation for e . One cannot find the point in ( )V I
which is projected to the non-zero vector ( ),x y  unless e takes 
certain particular values (the eigenvalues). This example 
is an application of integrality check by means of Gröbner 
basis. (This useful idea will be expounded later.)

Normalization

Let us consider a curve 2 3 2y x x= +  in [ ],x y , as in Figure 
2. The curve has a singularity at ( )0,0  where two branches 
intersect. Let /t y x= . Then y tx= , 2 3 2y x x= + , and ( )2 1t x= +

. These equations make an ideal ( )2 3 2 2, 1,= − − − −−I y y x x t xtx  in 
[ ], ,x y t . The affine algebraic variety V(I) has no singularity and 

it maps to the curve 2 3 2y x x= +  by the projection to [ ],x y .



www.innovationinfo.org

J Multidis Res Rev 2019 57

This is an example of the resolution of singularity. This 
sort of procedure lies in a broader concept of “normalization”. 
If S is an integral domain, its normalization S is the integral 
closure of S in the quotient field (the field of fractions) of S.

Definition 4.11 (Normal) Let S be an integral domain with 
the field of fractions K. Let f be any monic polynomial in [ ]S x . If 
every root /a b K∈ of f also lies in S, then S is normal.

Example 4.39 One can prove that every UFD is normal.

Definition 4.12 (Normalization) Let R  be a commutative 
ring with identity. The normalization of R  is the set of 
elements in the field of fractions of R  which satisfy some 
monic polynomial with coefficients in R .

Example 4.40 Observe that, in the above example, t is in the 
quotient field of [ ] ( )2 3 2, /S x y y x x= − − , and observe that the 
equation 2 1t x− − is a monic polynomial which guarantees 
that t is integral over S. In fact, in order to prove that this 
resolution of singularity is literally the normalization, it is 
necessary for us to do the argument in detail. So we omit it 
now.

Example 4.41 Consider ( )2 3I x y= −  and ( )V I . By setting 
3x t=  and 2y t= , the coordinate ring 3 2[ , ] / [ , ]C x y I C t t . Let us 

denote 3 2,t t   by ( )V . Then t  is a root of polynomial 2 2s t−  
in ( )[ ]V s , and ( )t V∉ . Hence ( )V  is not normal.

Example 4.42 In the above example of the resolution of 
singularity, t is contained in the normalization of ( )V . As 
t is the root of ( )[ ]2 2s t V s− ∈ , every element of [ ]t is also 
a root of some monic polynomial in ( )[ ]V s . (To prove the 
validity of this statement, we need some arguments by 
commutative algebra ) Hence, [ ]t in the normalization of
( )V . Besides, [ ]t  is a UFD, hence normal. Therefore [ ]t is 

the normalization of ( )V .

In fact, the procedure to find a normalization of 
[ ]1,..., /nS K x x I= is to find another ring [ ]1,..., / 'mS K y y I=  

with the normalization map S ↪ S . The algorithm by 
Decker et al. enables us to compute such normalization. If 

[ ]1 2, ,.... /nI R K x x x I⊂ = is a radical ideal, the normalization by 
the algorithm shall give the ideal decomposition of I . The 
computation returns s polynomial rings 1,..., sR R  and s prime 
ideals 1 1,..., s SI R I R⊂ ⊂  and s maps { }: , 1,...i iR R i sπ → =  such that 
the induced map

[ ]1 1 1: ,..., / / /n s sK x x I R I R Iπ → × × ,

whereby the target of π (the product of quotient rings) 
is the normalization.

As we shall see in section 6, the primary ideal 
decomposition is a substitution for the solution of eiganvalue 
problem. It is not so surprising that we meet again the 
decomposition of an ideal in the desingularization of the 
algebraic variety. The secular equation is given as

{ }1 1 2 2 , 1,...ε+ + + = =i i in n ia x a x a x x i n
or

( ){ }1 2 1 1 2 20 , ,..., : , 1,...ε= = + + + − =i n i i in n if x x x a x a x a x x i n .

Then we have to find ε which shall give the non-zero 
solution of the matrix equation

11 12 1 1

21 22 2 2

1 2

0
0

0

ε
ε

ε

−    
    −    =
    
    −    





   



n

n

n n nn n

a a a x
a a a x

a a a x

Observe that the matrix in the left-hand side is the 
Jacobian matrix

i
ij

j

fJ
x
∂

=
∂

The singular locus of the algebraic affine set defined by 
{ }if  is determined by the rank condition of the Jacobian 
matrix, namely by the condition that the Jacobian matrix is 
not of full rank. The desingularization is the normalization, 
and the latter would result in the decomposition of an ideal, 
by the algorithm of Decker.

It is not so difficult to trace the algorithm of normalization 
given in [10,11].

We need some definitions. Let [ ]1,..., /nA K x x I= . For 
( )1,..., mI f f=  The Jacobian ideal ( )Jac I  is defined by the 

c c× minors of the matrix

1 1

1

1

∂ ∂ 
 ∂ ∂ 
 
 ∂ ∂  ∂ ∂ 



 



n

m m

n

f f
x x

f f
x x

1.5

1

0.5

0

-0.5

-1

-1.5
-2                 -1.5                 -1                 -0.5                   0                  0.5                  1

Figure 2: The curve 2 3 2    y x x= + with the singularity at (0; 0).
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Where, ( )dimc n X= −  with ( )X V I= . Then the singular 
locus of A is given by ( ) ( )( )sloc JacA V I I= + .

Then we execute the computation by following these 
steps.

•	 Compute the singular locus I. Let J be a radical ideal such 
that ( )V J contains this singular locus.

•	 Choose a non-zero divisor g J∈ and compute :gJ J . For a 
homomorphism from J  to J , denoted by ( )Hom ,J J , and 
for a non-zero divisor x in J , ( )Hom , :x J J xJ J= .

•	 Let ( )0 1: , ,..., sg g g g=  be the generators of :gJ J . There are 
quadratic relations of the form

0

,  with 
s

j ij iji k
k k

k

gg g A
g g g

ζ ζ
=

= ∈∑ .

•	 Also there are linear relations between 1, ,..., sg g g (the 
syzygy) of the form

 
0

0
s

k
k

k

g
g

η
=

=∑
•	 Then a surjective map is given by

 [ ] ( )1,..., Hom , ,sA T T J J ↠ i
i

gT
g



•	 The kernel of this map is an ideal 1I  generated by the 
quadratic and linear relations of the form

0 0

,
s s

ij
i j k k k k

k k

TT T Tζ η
= =

−∑ ∑
and it yields the extension of A by

[ ]1 1 1,..., /sA A T T I=

•	 This ring 1A  may be normal. If not, we make the extension 
of 1A  again. After finite steps of the successive extensions, 
we arrive at the normalization.

•	 The criterion of normality: A is normal if and only if
( )Hom ,AA J J= . If this criterion is satisfied, we do not 

have to add extra
iT . Then the algorithm stops.

Consider ( ),I x ey y ex= + + in [ ], ,x y e . 

Let [ ], , /A x y e I= . The Jacobian matrix of I is

1
1
e y

e x
 
 
 

.

Then

( ) ( )2Jac 1 , ,I e x ey xe y= − − − , or more simply, and. 

( ) ( )( ) ( )2sloc Jac 1 , ,A V I I V e x y= + = −
 
(Recall that the Gröbner basis 

of I  is ( ){ }2 1 ,− +x e y xe ). Hence we set 2(1 , , )J e x y= −  as a radical 
ideal containing the singular locus. Choose x  as the non-
zero divisor in J . Then ( )2 ,xJ x xy= , since ( )21x e−  vanishes 
as an element in A . Hence, ( ): ,xJ J x y= . Let /T y x= . Then 
there are two linear relations.

0, 1 0e T eT+ = + =
and a quadratic relation

2
2 2

2

yT e
x

= =

We have the extended ring
[ ] ( )

[ ] ( )

2 2

2 2

' / , 1,

, , , / , , , , 1,

A A T e T eT T e

x y e T x ey y ex y Tx e T eT T e

= + + −

= + + − + + −

with the ideal ( )2 2' , , , , 1,I x ey y ex y Tx e T eT T e= + + − + + − . This 
ring 'A is normal. Indeed, after some algebra (in fact, by 
means of computer algebra), we can check that the singular 
locus of ( )'V A is an empty set. (We check the emptiness 
by the computation of Gröbner basis, which should be 
generated by ( )1 .) From this reason, for a radical ideal J
which contains the singular locus, we have 'J A= (the ring 
itself). Hence ( )'Hom , 'A J J A=  and the criterion for the 
normality is satisfied.

As T  is integral over A  and actually T e= ±  in A , the 
ideal 'I  is represented in two ways by the substitution for T:

( ) ( )2, , , , 1 1aI x ey y ex y ex e e= + + − + =

( ) ( )2 2, ,1 ,1bI x ey y ex e x ey e= + + − = + −

These two ideal lie in [ ], ,x y e . As Ia is trivial, we adopt 
Ib for the purpose of normalization. In addition, when we 
introduce the variable T, we implicitly assume that 0x ≠ . 
When 0x = , the ideal I is given by

( ) ( )0 ,I I x x y= =∩ .

Then the normalization of A is given by two rings:

[ ] [ ] ( )0, , / , , / ,x y e I x y e x y= 

and

[ ] [ ] ( ), , / , , / ,1x y e I x y e x ey e= + − 

Compare this result to the example of primary ideal 
decomposition with the same ideal I which we will compute 
in section 6. We observe that the normalization has done the 
decomposition of the ideal imperfectly.

Hensel’s lemma
Consider the problem to solve the equation

( ) 2 7 0f x x= − =
Let us substitute 0 1a =  in ( )f x :

(1) 6 0mod3f = − ≡
Let 1 1 3a s= + . Then

2
1(a ) 6 6 mod 3f s≡ − + .

Hence, if 1s = , then
2

1(a ) 6 6.1 0mod3f ≡ − + = .

Let 2
2 1 3 1 3a s= + ⋅ + . Then

3
2(a ) 9 72 mod3f s≡ + .

Hence, if 1s = , then
3

2(a ) 9 71.1 0mod 3≡ + ≡f

Likewise, by setting n na a s= + , we can determine   
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such that 1(a ) 0mod 3n
nf +≡ . It means that we obtain the 3-adic 

solution of the equation
2

0 1 13 3X a a a= + ⋅ + ⋅ +

Let us consider the polynomial ( )f X in [ ]p x . We have

( ) ( ) ( ) 1modn n n
n nf X p Y f X p Y f X p +′+ = +

Hence if ( )np f X′  ≢ 10 mod np +  or, equivalently, if ( )α′f

≢ 0mod p , we obtain Y such that ( ) 10modn nf X p Y p ++ ≡  by the 
fraction.

( )
( )'n

f X
Y

f X
= −

Observe the similarity with Newton method in numerical 
analysis. In other words, the p-adic solution of ( ) 0f x =  as

0

i
n

i

p Y
∞

=
∑ . This is Hensel’s lemma, stated as follows.

Theorem 4.3 (Hensel’s lemma) If ( ) [ ]pf x x∈ and pa∈
satisfies

( ) 0modf a p≡

and

( )f a′ ≢ 0 mod p

then there is a unique pα ∈  such that ( ) 0f α = and 
moda pα ≡ .

In the lemma, there is a condition ( )f α′ ≢ 0mod p , while, 
from the above example, it seems that we should use ( )′ nf a  
≢0 mod p for changeable na . In fact, by the construction, 

0 modna a a p≡ = , it follows that ( ) ( )' 'nf a f a≡ . Hence we 
assume that condition only for the starting point a .

In commutative ring there is a related idea, called “Linear 
Hensel Lifting”, by the following theorem.

Let R be a commutative ring. Let f, g0, h0 be univariate 
polynomials in R[x] and let m be a ideal in R. If f decomposes 
into the product of 0g  and 0h  in /R m , that is to say,

0 0 modf g h m≡ ,

and if there exist polynomials s and t in [ ]R x such that

0 0. . 1mods g t h m+ ≡ ,

then, for every integer l we have polynomials ( )lg  and 
( )lh such that

( ) ( ) mod≡ l l lf g h m ,

and
( ) ( )

0 0, mod≡ ≡l lg g h h m
The computation of ( )lg  and ( )lh  is done in a constructive way.

Let ( )1
0g g=  and ( )1

0h h= . And let
( ) ( )1l l l

gg g m q+ = +

and
( ) ( )1l l l

hh h m q+ = +

We solve the equation
( ) ( )

( )0 0 mod
l l

h g l

f g hg q h q m
m
−

+ ≡

so that we obtain gq  and hq  such that ( ) ( )1deg deggq g<

and ( ) ( )1deg deghq h< .

Example 4.44 ( ) ( )2 1= − +f x x t , and [ ]R t =   . For
( )m t R= ⊂ , we begin from

0 1g x= +

0 1= +h x

and we obtain ( ) ( ),l lg h  in an iterative way. As usual, we 
simply write the roots of ( ) 0f x = by 1 t± + . Hensel’s lemma 
implies the existence of a power series in [ ]t   .

Real algebraic geometry
The computation of hydrogen molecule, presented in the 

introduction, is done in the real number, and in the algebraic 
set defined by the polynomials:

( )1 2{ , ,.. 0 | 1,... }i nA p x x x i r= = =

On the other hand, we can add extra constraint of the 
form

( )1 2{ , ,.. 0 | 1,... }i nB q x x x i s= ≥ = .

Hence it is important to study the existence of solutions 
of (A) with (B).

We review several results from real algebraic geometry 
from now on. (As for rigorous theory, see the book by 
Bochnak et al. [12] or the book by Lassere [13].)

These two statement are equivalent for an affine algebraic 
variety:

(i) the ideal ( )I X  has real generators [ ]1 1,..., ,...,k nf f x x∈ .

(ii) X X= , (by complex conjugation)

Then we define real affine algebraic variety and real ideal.

Definition 4.13 The set of real points ( )1,..., kV f f  with
[ ]1,...,i nf x x∈  is called a real affine algebraic variety.

Definition 4.14 An ideal I is called as a real ideal, if it is 
generated by real generators and satisfies the following 
property:

[ ] 2 2
1 2,..., and ...i n p ia x x a a I a I∈ + + ∈ ⇒ ∈

For any real algebraic variety, ( )I X is a real ideal. To see 
the difference between real and non-real ideals, consider ( )x , 
( )2x , and ( )21 x+ . The last two ideals are not real ideals.

Definition 4.15 Let [ ]1 1 2,... , ,...,r np p x x x∈  polynomials. 
The set

( ) ( ) ( )1 1 1,..., { | 0,... 0}n
rW p p a p a p a= ∈ ≥ ≥

is called as a basic closed semi-algrbraic set. A general 
semi-algebraic set is the boolean combination of them.

Theorem 4.5 (Real NullStellensatz) Let us define the real 
radical as follows:

2 2[ ] for some [ ], \ 0m
j j

j
I p x p g I q x m

 
= ∈ + ∈ ∈ ∈ 
 

∑

  

Then it holds that ( )( )I I V I=
 , where ( )V I  is the real 

affine algebraic set of I. If J is a real ideal, ( )( )J I V J=  ; that is 
to say, for a real ideal J, the radical ideal J  (by the standard 
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definition of commutative algebra) is equal to the ideal of 
( )V J  (the affine algebraic set of J in ).

Example 4.45 For ( )2 2I x y= + , ( )( ) ( ),I V I x y= .

Definition 4.16

( )22

1
[ ] [ ] for some

r

i
i

x p x p q x r
=

 = ∈ = ∈ 
 

∑ ∑   ,

12 2
1 1 1

{0,1}

( ,..., ) ... [ ]r

r

e e
n e e

e

g g g g xσ σ
∈

  Σ = ∈ 
  
∑ ∑

{ }1 2
1 1 2 1( ,..., ) ... ,...,mee e

m m mM f f f f f e e= ∈

From these definitions, 2[ ]x are the sums of squares of 
polynomials; ( )2

1,... ng gΣ is the “quadratic module”, which is 
the set of polynomials generated by 2[ ]x and 1,..., ng g ; M is 
the multiplicative monoid generated by 1,..., mf f .

Theorem 4.6 (Positivestellensatz) Let { | 1,..., },kg k n=  
{ | 1,.. }if i m= , and { | 1,... }lh l t=  be the polynomials in
[ ]1,..., nx x . The following properties are equivalent.

(i) 
( ) 0, 1,..., n
( ) 0, 1,...,
( ) 0, 1,...,

k
n

i

i

g x k
x f x i m

h x l t

 ≥ = 
 ∈ ≠ = 
 = = 



(ii) 2
1,... ng g g∃ ∈Σ , M( ,... )f f f∃ ∈ , and ( )1,... lh I h h∃ ∈  

such that g f h+ + = .

From this theorem, one can derive the following theorem, 
also.

Theorem 4.7 Let f and { | 1,..., }kg i n=  be polynomials in [ ]x
and ( ){ }1,.., nK x x W g g= ∈ ∈ | . Then the following statements 
hold.

(i) ( ), 0∀ ∈ ≥x K f x  if and only if ( )2
1, , ,... np g h g g∃ ∈ ∃ ∈Σ  

such that 2 pfg f h= + .

(ii) ( ), 0∀ ∈ >x K f x  if and only if ( )2
1, , ,... np g h g g∃ ∈ ∃ ∈Σ  

such that 1fg h= +

Example 4.46 

The theorem asserts that

0f >

if and only if
2 2 2

1 nq f p p= + + ,

for some polynomials 1, ,..., nq p p . (From the theorem, 
the set ( ) ( ){ | 0, 0}x f x f x∈ − ≥ ≠  is empty if and only if 

( )2 2 2 2
1 1nu s s fq f−∃ = + + − ∈Σ − , p∃ ∈ , M( )pv f f∃ = ∈ , such that
2 0u v+ = . Now we can choose 1 1 1 1,..., , p

n n np s p s p f− −= = = .) 
In other words, every non-negative polynomial is a sum of 
squares of rational functions.

Example 4.47 Consider 2 0x ax b+ + = .

Define D , f , g , h  to be
2 / 4D b a= − ,

2
1

2
ag x

D
  = +    

,

1f =

( )21h x ax b
D

= − + + .

When 0D > , these polynomials are well defined in [ ]x . 
Then it happens that 2 0g f h+ + = , where 1 Monoid({1}),f= ∈  

{ }( )2 2[ ] 1g x∈ ⊂ Σ∑ , and ( )2h I x ax b∈ + + . In other words, the 
quadratic equation has no real root if and only if 0D > .

Example 4.48 Consider the secular equation (for a molecular 
orbital model of a simple diatomic molecule):

0 1
1 0

x x
e

y y
−    

=    −    
.

The problem is equivalent to

1

2

0
0.

h x e y
h y e x
= + =
= + =

Add the constraint:

0f x y= − ≠
A Gröbner basis (with respect to the lexicographic order

x y e> > ) of the ideal ( )1 2,I h h= is ( )2 ,H y e y x y e= − + . After 
some algebra, 2f  reduces to 2 22 2y e y+  with respect to H . 
Hence we have obtained

2 0g f h+ + =  for ( )1 2 ,h I h h∈  and ( ) 22 1g e y= − +

. If 1e ≤ − , ( )( )2
2 1g e y= − + and it satisfies the condition of 

Positivstellensatz. Hence there is no real solution to the 
problem. (Or we say that the non-symmetric wave function 
( ),x y  such that x y≠ is not the ground state of the molecule 
at eigenvalue 1− .)

Noether normalization
Let R S⊂  be a ring extension. Remember how can be an 

element s S∈ integral over R .

Definition 4.17 An element s S∈ is integral over R if it 
satisfies a monic polynomial equation with coefficients 
{ }ir R∈

1
1 0d d

ds r s r−+ + + =

The equation is called an integral equation for S over R. If 
every element s S∈ is integral over R, we say that S is integral 
over R. We also say that R S⊂ is an integral extension.

Definition 4.18 Let S be an affine ring [ ]1,..., /nS K x x I= . Then 
there are elements 1,..., dy y S∈ with the following properties.

(i) 1,..., dy y are algebraically independent over K.

(ii) [ ]1,..., dK y y S⊂ is an integral ring extension.

If the elements 1,..., dy y  satisfy these two conditions, the 
inclusion [ ]1,..., dK y y S⊂ is a Noether normalization for S .

Example 4.49 Let ( ) [ ], , ,I x ey y ex x y e= + + ⊂  , and let
[ ], , /S x y e I=  . The residuals ( ),x y S∈  are not integral over

[ ]e . But the change of the variables

, ' 4 , 5 6x x y y x y e x y e→ → = + → + +
makes the change in I as follows:

2 2

(20 29 4
6 ,5 6 4 )

I I x xy xe x
y ye x xy xe x y

′→ = + + +

+ + + + + +
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We can prove the residuals [ ], '( ' , ', ' / 'x y S x y e I∈ =  ) are 
integral over [ ]'e . Indeed, after a hard algebra (by means 
of Gröbner basis theory and the variable elimination as we 
learn later), we affirm that the ideal 'I contains following 
two polynomials

3 2 2 265 28 2 3 3y y e y ye y+ + + −

and
3 2 2 2325 38 12x x e x xe x− − + −

Example 4.50 There are several types of the variable change 
which conduct Noether normalization.

•	 i i i n nx y x xλ→ = +  with iλ  in the coefficient field K , 
when K is an infinite field.

•	
1

for2
ir

i i i ix y x x i n
−

→ = − ≤ ≤ . We have to find an integer
r .

To do with the latter type is, in fact, the proof of the 
existence of Noether normalization. Let ( )1,..., nf x x be a 
polynomial defining the ideal I . By the change of variables, 
we obtain

( )1

1 2 1 1, ,...,
nr r

nf x y x y x
−

+ + .

If the monomial of the highest degree with respect to 1x  
is originally given by

1 2
1 2

naa a
nAx x x

it becomes

( )1
1

1 1
2

i
n

a r
i

i

Ax y x
−

=

+∏ .

Hence, after the change of the variables, the term of the 
highest degree with respect to 1x  is given by

2 1
1 2

1

n
na a r a rAx

−+ + +

If r is large enough, this term has the degree larger 
than any other monomials. Therefore 1x  is integral over
[ ]2 ,..., nK y y . There is another way to define the dimension 

of the variety. Let [ ]1,..., nI K x x∈  be a proper ideal. Let ( )A V I=
. If ] [1 1,.., ,..., /d nK y y K x x I ∈   is a Noether normalization, the 
dimension of A  is given by the number d , namely,

( )dim A d=

Differential Galois theory
One of the important ideas concerning algebraic 

geometry, differential algebra, and quantum mechanics is 
the differential Galois theory.

Let us solve

' 0y y− =
We get ( )expC t .

Let us solve
2 ' 0y ty″+ =

We get ( )2expC dt t−∫ . In the first case, we can get the 
solution in the range of elementary functions; on the other 
hand, in the second case, we have to do the integration.

Then there arises a question: under what circumstance 
one can express the solution of a differential equation 
using exponents, integration, and also by adding algebraic 
elements? We proceed step by step, by adding more 
elements which are constructed over the elements already 
presented in the computation. The analytic solution given 
by this way is called Liouvillian solution, although it is not 
always possible to construct it. The solvability condition is 
given by the differential Galois theory [14-16].

In the application of eigenvalue problem in quantum 
mechanics, we can consider the one-dimensional 
Schrödinger equation:

( ) ( )( ) ( )2nx P x xψ λ ψ″ = −

with the even-degree monic polynomial potential

( )
22 1 1 1

2
2

0 0 0

i i n
n i n i i

n i i i
i i i

P z z a z z b z c z
− − −

= = =

 
= + = + + 

 
∑ ∑ ∑

In the last representation of 2nP , the polynomial is given 
by completing squares. Let us write the solution in the 
following form:

( ) ( )( )expsx P f xψ = ±

as the product of a monic polynomial sP  and

( )
11

01 1

kn n
k

k

b xxf x
n k

+−

=

= +
+ +∑

Now we can establish the relation among the coefficients 
{ }ib  and { }ic  in the polynomial potential, the eigenvalue λ  
and sP . The relation of this sort is given by a second-order 
differential equation for sP . As the consequence of differential 
Galois theory, the equation has solutions at the particular 
setting of { }ib , { }ic  and λ . To solve the problem, one can 
utilize Gröbner basis theory and the variable elimination, 
which shall be explained later. If the equation is solvable, we 
can obtain the analytic solution [16].

Other important concepts of commutative algebra
It is advisable that the readers should consult textbooks 

and grasp the concepts of more advanced technical terms, 
such as “module”, “free module”, ”regular local rings”, 
“valuation”, “Artinian ring”, “affine algebraic variety”, or 
so. Maybe the concepts of homological algebra would be 
necessary, such as “functor”, “exact sequence”, “resolution”, 
“projective”, “injective”, “Betti-number”, and so on. Indeed, 
the research articles are frequented by these concepts.

Gröbner Basis Theory
The Gröbner basis theory is the key technique of 

commutative algebra and algebraic geometry[17-19]. The 
idea was first proposed by Bruno Buchberger, and the 
namesake is his advisor Wolfgang Gröbner.

The monomial orders
In one-variable case, we implicitly use the “monomial order” 

through the ordering of degrees: 21 x x< < <or 21 ...x x> > >  
In the multivariate case, we encounter the monomials of the 
form xi yj zk. What should be the appropriate ordering of the 
monomials? In fact, there are several ways to set the order .
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Let 1
1( ... )naaa

nx x x= and 1
1( ... )mbbb

mx x x= be the monomials. And 
let a and b be sequence of superscripts ( )1 2, ,..., na a a  and
( )1 2, ,..., nb b b .

Definition 5.1 The lexicographic order.

1 1 1(1 ) : ,..., ,a b
n i i i ix x i i n a b a b a b− −< ⇔ ∃ ≤ ≤ = = < .

This definition is equivalent to the following statement.
a bx x< , if the left-most component of a-b is negative.

Definition 5.2 The reverse lexicographic order.

1 1(1 ) : ,..., ,a b
n n i i i ix x i i n a b a b a b+ +< ⇔ ∃ ≤ ≤ = = >

This definition is equivalent to the following statement.
a bx x< , if the right-most component of a-b is positive.

Definition 5.3 The degree reverse lexicographic order:

Let a
1 ndeg(x ) a ... a= + +

a bx x< ⇔

 (1) a bdeg(x ) deg(x )<

or

(2) a bdeg(x ) deg(x )=  and i∃ ( )1 i n≤ ≤  :

1 1,..., ,n n i i i ia b a b a b+ += = > . (The right-most component of 
a-b is positive. )

Example 5.1 Compute 3( 1)x y z+ + +  in [ ], ,x y z . The 
monomials can be sorted by the different types of monomial 
order. (Here the degree of a monomial is given by this 
correspondence: x y z> > .

The lexicographic order: x y z> > ;

3 2 2 2 2 2

3 2 2 2 3 2

3 3 3 3 6 6 3 6
3 3 3 3 6 3 3 3 1

x x y x z x xy xyz xy xz xz
x y y z y yz yz y z z z
+ + + + + + + +

+ + + + + + + + + + +

The reverse lexicographic order: z > y > x;

z 3 + 3 y z 2 + 3 x z 2 + 3 z 2 + 3 y 2 z + 6 x y z + 6 y z + 3 x 2 
z+6xz+3z+y3+3xy2+3y2+3x2 y+6xy+3y+x3+3x2+3x+1

The degree reverse lexicographic order: x y z> > ;
3 2 2 3 2 2 2 2 3

2 2 2

3 3 3 6 3 3 3
3 6 3 6 6 3 3 3 3 1

x x y xy y x z xyz y z xz yz z
x xy y xz yz z x y z
+ + + + + + + + +

+ + + + + + + + + +

with the monomial order < . The ”initial monomial” in ( )f<

is the largest monomial included in f  (from which the 
coefficient is removed). The “initial coefficient” ( )lc f  is the 
coefficient of in ( )f< . Hence the “leading term” is given by the 
product of the initial coefficient and the initial monomial:

( )in ( )lc f f< . We use an extra definition: in (0) 0< = .

The initial ideal in ( )I<  is the monomial ideal, generated 
by the initial terms of the polynomials in I ,

{ }in ( ) in ( ) :I f f I< <= ∈ .

This ideal is a useful tool in the theory of Gröbner bases.

Definition of Gröbner basis

The Gröbner basis is defined now.

Definition 5.4 Let I  be the ideal in the polynomial ring R , 
with the monomial order < . The Gröbner basis is the sequence 
of elements 1 2, ,..., mg g g , such that 1in ( ) (in ( ),..., in ( )nI g g< < <= .

We could represent the polynomial f  by means of a 
sequence of polynomials ( )1 2, ,..., mu u u I∈  in the following 
way (the standard expression)

1 1 2 2 m mf p u p u p u r= + + +

such that

(i) No monomial in the remainder  is contained in the 
ideal 1(in ( ),...in ( )nu u< < ).

(ii) in ( ) in ( ) for alli if p u i< <≥

If 0r = we say that f reduces to zero with respect to
1 2, ,..., mu u u . In general case, the standard expression is not 

unique. From this reason, we have to use Gröbner basis, 
since the standard expression by Gröbner basis is unique 
and any polynomial reduces uniquely by this basis. For 
example, consider the case with 2f xy y= − , 1g x y= − , and 

2g x=  in the lexicographic order. There are two standard 
expression: 1f yg=  and 2

2f yg y= − . However, the ideal 
( )1 2,g g  is generated by the Gröbner basis ( ),x y , by which f 
reduces to zero and it has the unique standard expression.

Buchberger’s algorithm
The Buchberger’s algorithm is the standard way to 

generate Gröbner basis [3,6,7,9,20-22]

Let us define the S-polynomial of two polynomials f and g
cm(in ( ), in ( )) cm(in ( ), in ( ))( , )

in ( ) in ( )
< < < <

< <

= −
l f g l f gspoly f g f g

c f d g

where c and d are the leading coefficients of f and g .

One can prove that

1,..., mg g  are the Grb̈ner basis of ideal I  with respect to 
a monomial order < ,

if and only if

( ),i jspoly g g reduces to zero with respect to 1,..., mg g  for
i j< .

The computational step is as follows.

Step–0 Let G  be the generating set of ideal I .

   The difference between the lexicographic order and the 
reverse lexicographic order is apparent; it is simply a 
reversal. The difference between lexicographical order and 
the degree reverse is subtle; it could be understandable by 
these phrases by Ene and Herzog [9],

...in the lexicographic order, u v>
if and only if u has “more from the beginning”

than v; in the degree reverse lexicographic order, u v>  

if and only if u has “less from the end” than v...

Initial ideal
Let 0f ≠  be a polynomial in the ring [ ]1 2, ,..., nR K x x x=



www.innovationinfo.org

J Multidis Res Rev 2019 63

Step-1 For every pair of polynomials ,p q  in the ideal G , 
compute ( ),spoly p q and its reminder r  with respect to G .

Step-2 If all ( ),spoly p q reduce to zero with respect to G , we 
have already obtained the Gröbner basis. If there are non-
zero reminders 0r ≠ , add r to G  and repeat again at Step–1.

The computation terminates after finite steps.

Let us see examples.

Example 5.2 Consider f x y e= +  and [ ], ,R x y e=   in [ ], ,R x y e=  , 
with respect to lexicographic order x y e> > . In the beginning, 

{ },G f g= . As in ( )f x< = and in ( )g xe< = , ( ) 2.,spoly f g ef g y ye= − = − −  
The leading monomial in ( ( , ))spoly f g<  is 2y e . As the 
monomials in Spoly (f, g) is not included by the monomial 
module (in ( ), in ( )) ( , )< < =f g x xe , ( ),spoly f g does not 
reduce to zero; indeed it is the reminder itself. We add 

( ): ,h spoly f g= to G  so that { }, ,G f g h= . Then we compute 
more of s-polynomials : ( ) 2,spoly h g xy y e yf= − = − and 

( ) 2 3,spoly h f xy y e yf yeh= − − = − − . Since ( ),spoly h g  and 
( ),spoly f g  reduces to zero with respect to G , we obtain 

the Gröbner basis G . In fact, the initial term of g xe y= + is 
divisible that of  f x ey= + , and h ef g= − , g  is a redundant 
term which we can remove from the basis safely.

Example 5.3 Consider 1f x ey= + , 2f y ex= + 2 2
3 1f x y= + −  

in [ ], ,R x y e= , with respect to lexicographic orer x y e> >
. We have { }1 2 3, ,G f f f= . We compute the s-polynomials:

( ) 2
1 2,spoly f f ye y= − , ( ) 2

1 3, 1spoly f f xye y= − + , and
( ) 2

2 3,spoly f f xy y e e= − + . These three polynomials reduce 
to 2

4f ye y= − , f5=-2y2+1, and 2
6 2f y e e= − + . We get 

{ }1 2 3 4 5 6, , , , ,G f f f f f f= and we compute the s-polynomials and 
the reminders. The only non-zero reminder is 2(1/ 2)( 1)e −
, to which ( )4 5,spoly f f  and ( )4 6,spoly f f  reduce. We have 

{ }2
1 2 3 4 5 6 7, , , , , , 1G f f f f f f f e= = − . We compute the 

s-polynomials and ascertain that all of them reduce to zero. 
Thus { }2 2 2 2 2 2, , 1, 1, 2 1, 2 , 1G x ey y ex x y xye y y y e e e= + + + − − + − + − + −  is the 
Gröbner basis. However, y ex+ , 2 2 1x y+ − , 2 1xye y− +  and 

22y e e− +  are redundant: indeed they have the initial 
monomials divisible by those of other polynomials 

{ }2 2( , 2 1 )ˆ 1,G x ey y e= + − + −  and reduce to zero with respect to Ĝ
. Thus we can chose Ĝ  as the Gröbner basis, and indeed this 
ideal satisfies the required property.

Example 5.4 Consider ( )  1,  1I x= +  in [ ]x . As
( )1,    1spoly x x+ = , The Gröbner basis is ( )1, , {1}1+ =x x . This 

Gröbner basis is never to be zero, and the set of equation 
1 0 0x x+ = ∧ = does not have any solution. In other 

words, the affine algebraic set of this ideal is empty
( )    ({1})  V I V= = ∅ . Likewise, in the more complicated 

case, by computing the Gröbner bases G, we can check the 
existence of the solutions of the set of polynomial equations.

In the above algorithm the generated Gröbner basis is not 
properly “reduced” by the terminology of several contexts. A 
reduced Gröbner basis ( )1,..., ng g should have the following 
property [23]:

•	 The leading coefficient of each ig  is 1.

•	 for all i j≠ , the monomials in jg are not divisible by 
in ( )ig< .

Gröbner basis of zero-dimensional ideal

The following statements are equivalent for a zero-
dimensional ideal [ ]1 2, ,..., nI S K x x x⊂ =  with a monomial 
order < .

1.	 I is a zero-dimensional ideal.

2.	 The affine algebraic set ( )V I is finite.

3.	 If G is a Gröbner basis, then, for any 1 i≤ ≤  n, there exists 
g G∈ such that ( )in j

ig xν< =  for some 0inu ≥ .

4.	 I is contained in finitely many maximal ideals of S .

5.	 Let ( )Mon A be the set of monomials in A . The set
( ) ( )Mon \ Mon( )S in I<  is a finite set.

6.	 /S I is a K -vector space of finite dimension.

The statement 3) enables us to detect a zero-dimensional 
ideal from its Gröbner basis, if the latter contains polynomials 
which have initial terms such that i

ixν  for any 1 i n≤ ≤ .

The feature of zero-dimensional ideal, given by statement 
5) and 6), will be useful for solving polynomial equations by 
Stickelberger’s theorem, as is explained in section 5.12.

Example 5.5 For 2 2 2( 1, , ) [ , , ]I x y z x y z x R x y z= + + − + + ⊂ , 
the Gröbner basis with respect to lexicographic monomial 
order x y z> >  is ( )22 1, ,z y z x− + . This is the example of zero-
dimensional ideals and it satisfies the statement 3).

Example 5.6 For ( ) [ ]2 2 2 1, , ,I x y z x y z x y z= + + − + + ⊂  , the 
Gröbner basis with respect to lexicographic monomial order 
x y z> >  is ( )2 22 2 2 1,y yz z x y z+ + − + + . As the ideal depicts the 
intersection of the unit sphere and a plane surface, it is not 
zero-dimensional. Although the Gröbner basis has the terms 

2z  and z , these terms are not initial terms. Hence this ideal 
does not satisfy the statement 6).

Example 5.7 For 2 2 2( 1, , ) [ , , ]I x y z x y z x R x y z= + + − + + ⊂ , 
the Gröbner basis with respect to lexicographic monomial 
order x y z> >  is ( )22 1, ,z y z x− + . This is the example of zero-
dimensional ideals and it satisfies the statement 3).

Syzygy

For a Gröbner basis{ }1 2, ,..., mf f f , there are relations as 
follows

1

0
s

i i
i

s f
=

=∑

by means of the set of polynomials{ }1 2, ,..., ms s s . (A trivial 
example is 0i j j if f f f− = ) Such a set of polynomials is a 
“module” (which is actually a vector space), and we call it the 
first syzygy and denote it by ( )1 2, , , nSyz f f f… . The basis set of 
this module is computed from the Gröbner basis.

When the computation of Gröbner basis is completed, 
there are relations among the generators of the basis of the 
form:

( ) ,1 1 ,2 2 ,,i j ij ij ij m mspoly f f q f q f q f= + + +
.
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Let us define

( ) ,1 1 ,2 2 ,,ij i j ij ij ij m mr spoly f f q f q f q f= − − − −

Then { }ijr  generates ( )1 2, , , nSyz f f f… . Moreover,even 
if 1 2, ,..., np p p  is not a Gröbner basis, we can compute 

( )1 2, , , nSyz p p p…  through its Gröbner basis.

Example 5.8 Let us compute the syzygy of 
{ }2 2

1 2 3, , 1p tx ey p tx ey p x y= + = + = + −  with the lexicographic 
monomial order t x y e> > > . ( )1 2 3, ,Syz p p p  are generated 
by three trivial generators

( ) ( ) ( )3 1 2 1 3 1,0, , , ,0 , 0, ,p p p p p p− − − ,

and by the non-trivial one,

( )2 3 2 2 2 2, 1,x ye y e ye x y y e+ − − − + − .

Observe that the inner product of those generators and 
( )1 2 3, ,p p p  is zero. The generators form a vector space.

Sygyzy is a module, in other words, a kind of vector 
space generated by the vectors, the entries of which are 
polynomials. We can compute the second syzygy in the 
vector generators of the first syzygy and, likewise, the higher 
syzygy, too. The successive computation of higher syzygy 
enables us to construct the “resolution” of a module M in a 
Noetherian ring; the computation terminates after a certain 
step so that we do not find any non-trivial sygyzy in the last 
step [23].

Church-Rosser property
The reduction is a binary relation from one object to 

another, like an arrow going in one direction. We often call it 
the rewriting process.

Definition 5.5 A binary relation (denoted by the symbol
→ ) has the Church-Rosser property, if, whenever P and Q 
are connected by a path of arrows, P and Q have a common 
destination R by the relation.

Hence we can define Gröbner bases in the other way: 
A basis is a Gröbner basis if and only if the reduction with 
respect to the bases has the Church-Rosser property, as is 
illustrated in Figure 3.

Complexity of the Gröbner basis algorithm

The original algorithm by Buchberger, as is presented 
here, is not so efficient. It produces a lot of useless 
pairs of polynomials ( ),p q , since such pairs give birth to 
s-polynomials ( ),spoly p q , which immediately reduce to 
zero or produce redundant polynomials. There are a lot of 
studies about the upper bound of the complexity of Gröbner 
bases, such as Hermann bound [24], Dube bound [25], 
Wiesinger’s theorem [26], and so on. Those bounds are 
determined by several factors: (1) the number of variables, 
(2) the number of polynomials in the ideal, (3) the number 
of possible s-polynomials, (4) the maximum degrees of the 
polynomials, etc. In the worst case, the complexity is doubly 
exponential in the number of variables [25,27-30]. However, 
the computation of the Gröbner basis is equivalent to the 
Gaussian elimination process of a large matrix (by the row 

reduction of Macauley matrix) [17,29,31,32]. For the case 
of homogeneous polynomial ideals, the complexity in the 
Gaussian elimination method is bounded by

1
,

n D
O mD

D

ω + − 
     

where ω  is a constant, m is the number of polynomials 
[33], n is the dimension of the ring, and D  is the maximum 
degree of the polynomials [33]. In order to improve efficiency, 
one can employ more refined methods, such as Faugère’s 4F  
and 5F . Indeed the efficiency of 5F  [34, 35] outperforms the 
row reduction computation of Macaulay matrix [33].

In fact, the efficiency of the algorithm is highly dependent 
on the chosen monomial order. The lexicographic order 
is convenient for theoretical study, but it consumes a 
considerable quantity of computational resource. Thus one 
often has to compute the Gröbner basis by other monomial 
orders (say, the degree reversible lexicographic order) in 
order to facilitate the computation, and then, one can remake 
the computed result in lexicographic order, by means of 
FGLM (Faugère, Gianni, Lazard, Mora) algorithm [36].

There is another problem in the Gröbner bases generation. 
which is apparent in practice. The Buchberger’s algorithm 
applies the operation of addition, subtraction, multiplication, 
and division to the polynomial system. It often causes a great 
discrepancy in the degrees of the generated polynomials and 
the numerical scale of coefficients in the final result. In the 
computation presented in the introduction of this article, one 
can observe such a tendency. Thus, for the practical purpose, 
one must utilize several tricks to keep the polynomials as 
“slim” as one can [37-39].

Gröbner basis for modules
Let us review what is the module. A R −module M is an 

abelian group with scalar multiplication R M M× → , such as
( ),a m am M→ ∈ . It has the following property.

•	 1m m=
•	 ( ) ( )=ab m a bm

R

Q

Q

R2R1

P

P

Figure 3: Two types of reductions by binary relations. (Upper) not Church-
Rosser type; (Lower) Church-Rosser type. If the basis of an ideal is not 
Gröbner, the reduction goes in several destinations as in the upper figure. On 
the other hand, if the basis is Gröbner, the reduction is unique.
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•	 ( )a b m am bm+ = +
•	 ( )a m n am bm+ = + .

A free module is the module with a basis set { }ie . We can 
compute Gröbner bases of free modules. One of the purpose 
of this sort of computations is to study the linear equation of 
polynomials:

11 12 1 1 1

21 22 2 2 2

1 2

n

n

n n nn n n

a a a x b
a a a x b

a a a x b

    
    
    =
    
    
    





   



for which one might ask for the linear dependence of 
rows.

We define the monomial order in modules in these ways.

Position over coefficient : i jue ve> if i j< or i j= and
u v> .

(Example: 2 1 1 2x e x e> ).

Coefficient over position i jue ve>  : if u v> or v v= and
i j< .

(Example: 1 2 2 1x e x e> ).

In the similar way as in the case of polynomial, we chose 
the leading terms of the elements in a module; we also 
compute the s-polynomials and the reminders in order that 
we obtain the Gröbner basis. The slight difference is that 
when in ( ) if ue< =  and in ( ) ig ve< =  we use the s-polynomial 
as follows:

cm( , ) cm( , )( , )
( ) ( )

= −
l u v l u vspoly f g f
lc f u lc g u

(Here we use the notation ( )lc x  to represent the 
coefficient of in ( )< x .)

Application of Gröbner basis
Gröbner basis is a convenient tool to actually compute 

various mathematical objects in the commutative algebra.

Example 5.9 Elimination of variables: The intersection of 
ideal I R⊂ and the subring [ ]1 2, ,..., nS R x x x⊂  is computable. 
Let [ ]1,...,t nS R x x+= and let G  be a Gröbner basis of I . Then 

tG G S= ∩ is the Gröbner basis of S. If we compute the Gröbner 
basis by means of lexicographic orders 1 2 ... nx x x> > > , we 
obtain the set of polynomials,

( ){ }1 1, 1,...,i
nf x i i= ,

( ){ }2 1 2, , 1,...,i
n nf x x i i− = ,

...

( ){ }1 1 1 1,..., , , 1,...i
n t t n n n tf x x x i i− + + − − −= ,

...

( ){ }1 2, ,..., , 1,...,i
n n nf x x x i i= .

Thus we can easily get tG G S= ∩ .

Example 5.10 Intersection of ideal I and J in R. Let y be 
an extra variable. I J∩  is computable by the relation

[ ] ( ) [ ]( )1∩ = ⋅ ⋅ + ⋅ ⋅ ∩−I J I y R yy J R y R . The intersection of the 
right-hand side is computed by the elimination of variable y .

Example 5.11 The ideal quotient I : J is computable. If 
( )1,..., sJ f f= , then 

1

: ( : )
s

j
j

I J I f
=

=


. In addition, for a single 
polynomial f, ( ) ( ):I f f I f∩ = ⋅ . We can compute ( )I f∩ and 
obtain the generators{ }1 2, , , mg g g… . Then :I f is generated 
by{ }1 2/ , / ,..., /mg f g f g f . Hence : jI f is computed as the 
intersection of : jI f .

Example 5.12 Saturation: it is defined for an ideal I and a 
polynomial f  in a ring S  as follows.

{ }: : thereexists 0such that∞ = ∈ > ∈iI f g S i f g I
Let t be a new variable, and let I  be the ideal generated 

in [ ]S t by I and by the polynomial 1 ft− . Then the saturation
: ∞ = ∩I f I S .

Example 5.13 Radical membership: if I f I∈ ⇔ ∈
for some 0i > ⇔  For all g S∈ , there exists ( 0)i >  such 
that if g I∈ . :I f S∞⇔ = . Hence, if the ideal, Î  defined in 
example 5.12, has the Gröbner basis { }1 , then f I∈ .

Gröbner basis algorithm in a different light

The Buchberger’s algorithm is actually the elimination 
in large matrices. It is the way of Faguère to do the row 
reduction in the large matrix. Let us see how it would work.

Consider the same problem: 1f x y e= + , 2f y x e= + ,
2 2

3 1f x y= + − . We compute the s-polynomials 1 2e f f−  and
1 3x f f− . The coefficients in these polynomials are given in 

the matrix.
2

1

1 2

2 2

3

1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 1 0 0 1 0
1 0 0 0 1 0 1

1

x
xye

x f
xe

e f
ye

f
y

f
y

 
 
            =          −  
 
 
 

The matrix in the right hand side is the so-called Macaulay 
matrix of the second order. The row reduction yields:

2

1

1 2

4 2

5

1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 0 1 0
0 1 0 0 1 0 1

1

x
xye

x f
xe

e f
ye

f
y

f
y

 
 
            =     −      − −  
 
 
 

We obtain 2
4f ye y= − + and 2

5 1f xye y= − + −  and now 
we have the temporary Gröber basis { }1 4 5, ,G f f f= ; 2f  and 

3f  can be excluded in the consideration, because they are 
“top-reducible” by 1f  and easily recovered by the present G.

Let us compose the third order Macaulay matrix:

2 2
1

2
5

1 1 0 0
1 0 1 1

1

xye
y ef y e

f y

 
     =    − −  
 
 

The row reduction yields this:



www.innovationinfo.org

J Multidis Res Rev 2019 66

2 2
1

2
6

1 1 0 0
0 1 1 1

1

xye
y ef y e

f y

 
     =    −  
 
 

We obtain 2 2 2
6 1f y e y= + − . Now { }1 4 6, ,G f f f=

We again compute the third order Macaulay matrix

2 2

4 2

6

1 1 0
1 1 1

1

y e
y f

y
f

 
−    

=    −    
 

The row reduction yields:
2 2

4 2

7

1 1 0
0 2 1

1

y e
y f

y
f

 
−    

=    −    
 

We obtain 2
7 2 1f y= − . Now { }1 4 7, ,G f f f= .

We compute the fourth order Macaulay matrix:
2 2

24

2 2
7

1 1 0 0
1 1 0 1/ 2 0
2

1

y e
y f y
e f e

 
   −    =     −     
 

We do the row reduction in the fourth order Macaulay 
matrix:

2 2

24

2
8

1 1 0 0
1 0 1 1 / 2 0
2

1

y e
yf y

f e

 
   −    =     −    
 

We obtain 2 2
8 2f y e= − . Now { }1 4 7 8, , ,G f f f f= . However, 

as 7 8f f−  yields 2
9 1f e= − , and as 2

4 9f y f= − , G would be
{ } { }2 2

1 7 9, , , 2 1, 1f f f x ye y e= + − − . The s-polynomials for G are 
computed now:

( ) 3
1 7 1 7

1 1,
2 2 2

yespoly f f x y e f f= + = +

( ) 3
1 9 1 9,spoly f f x ye f yef= + = + ,

( ) 2 2
7 9 7 9, 2spoly f f y e f f= − = − .

As those s-polynomials reduce to zero with respect to G, 
it is proved that G is a Gröbner basis.

In the above example, we process the computation 
carefully so that the unnecessary polynomials are removed 
immediately as soon as they appear; we also limit the 
computation in the Macaulay matrices which would be as 
small as possible, although these matrices might be embedded 
into a very large one. Indeed we have done the row reduction 
numerically, not symbolically, in a very large, but sparse 
matrix. The algorithms 4F  and 5F  by Faugère adopt these 
policies in a systematical way so that these algorithms are of 
the most efficient methods to generate Gröbner bases.

Stickelberger’s theorem
In [2], an alternative of the numerical solution, instead 

of Gröbner basis, is also used. This method is based on 
Stickelberger’s theorem. In general, for a zero-dimensional 
ideal [ ]1,... nI R k x x⊂ = , /R I  is a k-vector space of finite 
dimension; that is to say, the vector space is spanned by 
the set of monomials and the result of the multiplication 
between two monomial is also represented by the linear 
combination of the monomial basis. Therefore, according to 
the assertion of the theorem, the operation of a monomial to 
the monomial basis is thought to be the operation of a matrix 
in k . And the eigenvalue of the matrix gives the numeral 
value of the corresponding monomial at ( )V I .

Consider ( ) [ ]2 2, , 1 ,I x ye y xe x y R x y= + + + − ⊂ =  . As a Gröbner 
basis of I is ( )2 2, 2 1, 1x ye y e+ − − , the monomial basis in /R I is 
given by{ }1, , ,ye e y , from which x  is dropped.

The transformation by y and e  are given as follows.

2

2

1

1/ 2

1/ 2

0 0 0 1 1
0 0 1/ 2 0

.
0 1 0 0

1/ 2 0 0 0

y
y eye

y
e ye
y y

y
e

ye

ye
e
y

  
  
   =   
        
 
 
 =
 
 
 
  
  
  =
  
     

2

2

1

1

0 0 1 0 1
0 0 0 1

.
1 0 0 0
0 1 0 0

e
yeye

e
ee
yey

e
y

ye

ye
e
y

   
   
   =
   
       

 
 
 =
 
 
 
  
  
  =
  
     

The transformation matrices yM  (by y ) and eM  (by e) are 
those in the right hand side in the both equations. It is easily 
checked that there are four eigenvectors, common both for 

yM  and eM , which lie in /R I :

1 1 1 11
1/ 2 1/ 2 1/ 2 1/ 2

, ,
1 1 1 1

1/ 2 1/ 2 1/ 2 1/ 2

ye
e
y

       
        − −        =         − −
               − −        
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Now we have obtained the numeral values of e  and y  at 
( )V I  from y  and y . In fact, the eigenvalues yM and eM also 

give us the value of y  and e  at ( )V I . As for the value of x , we 
easily compute it from the polynomial relation by the ideal I.

Algorithm of computing Krull dimension

As we have seen, the zero-dimensional ideal is detected 
immediately after the computation of its Gröbner ideal. 
However, it takes a little of algebra to compute the non-zero 
dimension of an ideal [40].

•	 Let [ ]1,..., nI R x x⊂  be an ideal. Then the Krull 
dimension of [ ]1,..., /nR x x I  is given by an integer d
, i.e., [ ]( )1dim ,..., /K nR x x I d= , such that d  is the maximal 
cardinality of a subset of variables { }1,..., nu x x⊂  with 

[ ] ( )0I R u∩ =  (A maximal independent set of variables 
with respect to I is a subset u of variables of maximal 
cardinality, defined as this.)

•	 Let >  be any monomial ordering on [ ]1,..., nR x x . And let 
[ ]1,..., nI R x x⊂  be an ideal. Then the Krull dimension of the 

quotient ideal is computed by means of the initial ideal 
( )in< I  of I:

[ ]( ) [ ] ( )( )1 1dim ,..., / dim ,..., / in<=K n K nR x x I R x x I

Hence we only have to consider the initial ideal ( )in I< , 
instead of the ideal I itself.

•	 Let ( ) [ ]1 1,..., ,...,k nI m m R x x= ⊂ be an ideal with monomial 
generators im . Let denote { }1,..., nx x  by X . Define [ ]( ),d I R x  
in a recursive way

( ) [ ]( )0 ,d R X n= ,

and

[ ]( ) [ ]( )0 1, max{ | , \  for  such that | }
ix i i id I R X d I R X x x x m== .

Then [ ]( ) [ ]( ), dim /Kd I K x R x I= .

Example 5.14  Consider ( ) [ ],I xy x y= ⊂  .

[ ]( ) ( ) [ ]( ) ( ) [ ]( ){ }, , max 0 , , 0 ,d I x y d x d y=   ,

as ( )0 0| | 0x yI I= == = . Since ( ) [ ]( ) ( ) [ ]( )0 , 0 , 1d x d y= =  , 
[ ]( ) [ ] ( ), , dim , / 1= =Kd I x y x y xy  .

Example 5.15 Consider ( ) [ ]1 ,I xy x y= − ⊂  . Then we have to 
consider ( ) ( )in I xy< =  and the conclusion is the same as the 
previous example.

Example 5.16 Consider ( ) [ ], , ,I x ey y ex x y e= + + ⊂   with 
lexicographic order x y e> > . The Gröbner basis is
{ }2 ,y ye x ey− + . Hence ( ) ( )in ,I y x< = . Since { }u e=  is the set of 
variable of maximal cardinality with

( ) [ ] ( ), 0y x e∩ =

we have [ ]dim , , / 1K x y e I = . (We can arrive at the same 
conclusion by means of the recursive function [ ]( , , , ).)d I x y e

Algorithm for the Decomposition of the ideal 
as eigenvalue solver

In the example of the hydrogen molecule in section 3, 
we have seen that the polynomial secular equation is made 
into the triangular form, in which the relation of variables 
is clarified, almost to represent the roots themselves. The 

mathematical foundation of such computations is the 
primary ideal decomposition.

Primary ideal decomposition
There are two special sorts of ideal: prime ideal and 

primary ideal, as we have seen in the previous section. 
One can comprehend these sorts of ideal with the analogy 
of elementary number theory. An integer is decomposed 
as 1 2

1 2
naa a

nn p p p=   by the prime factorization. The ideal of 
the integer n is n  (the integer multiple of n ); and it is 
represented by 1 2

1 2
naa a

nn p p p= ∩ ∩ ∩     as the intersection 
of the ideals generated by certain powers of primes.

An ideal in the commutative algebra, likewise, could be 
decomposed as the intersection of primary ideals [3]:

i
i

I p=


One of the most elementary procedure for primary ideal 
decomposition is summarized as follows [41]. Let I be the 
ideal in a Noetherian ring R , and ,r s R∈  are elements such 
that r I∉ , s I∉  and rs I∈ .

1.	 Find n  such that : : nI r I r∞ = .

2.	 Let ( )1
nI I r= +  and ( )2 : nI I r= .

3.	 The ideal 1I  and 2I  are larger than I . The decomposition 
process must be done for each of them. By choosing 
some proper r , we can decompose 1I  and 2I , hence I  by 
primary ideals.

Example 6.1 Consider ( ),J x ey y ex= + +  in [ ], ,R x y e= with 
the lexicographic order x y e> > .

•	 y  is not in the radical J  ; and

( ) ( ) ( )2 1 .y e ey x ey y y ex J⋅ − = + − + ∈  Thus we set r = y and 
2 1s e= −

•	 Let ( ) ( )1 , , ,J J y y x ye y xe≡ = + + . This is a primary (in fact, a 
prime) ideal, and 2: : ...J y J y= = (stabilized).

•	 Let 2
2 : ( 1, )J J y e x ye≡ = − + : this is because of another 

representation ( )( )2 1 ,J y e x ye= − + . The ideal 2J  can be 
decomposed again.

•	 Now take 1r e= − , 1s e= + .

•	 ( ) ( ) ( )21 2 , 1 1, 1,J J e e x ey e x y≡ − = − + = − + . This ideal is 
primary (in fact, prime).

•	 ( ) ( )22 2 : 1 1,J J e e x y≡ − = + −  and ( ) 2
2 2: 1 : ( 1) ...J e J e− = − =  

(stabilized). This ideal is primary (in fact, prime).

Now we have done the primary ideal decomposition:
1 21 22J J J J= ∩ ∩ .

We should notice that the ideal J  is the secular equation 
of the diatomic system,

0 1
1 0

x x
e

y y
−    

=    −    
The primary ideal decomposition is the operation 

equivalent to the eigenstate computation by means of linear 
algebra: the solutions of the secular equation are given by the 
affine algebraic sets of the computed ideals. We obtain the 
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eigenvalue 1e = and 1e = −  for which the eigenvectors are 
( ),x x  and ( ),x x− .

In fact, the above example is one of the simplest cases 
which we can compute manually. The general algorithm for 
ideal decomposition is first proposed by Eisenbud [42]; and 
practical algorithms are developed by Gianni, Trager and 
Zacharias [43], by Shimoyama and Yokoyama [44], by Möller 
[45] and by Lazard . (As for the semi-algebraic set, one can do 
similar decomposition, as is studied by Chen and Davenport 
[46]). The comparison of algorithms is given in [10].

Algorithm of Gianni, Trager, and Zacharias

In this section, we review the primary ideal decomposition 
algorithm of Gianni, Trager, and Zacharias (GTZ algorithm) 
[18, 40]. In the algorithm which we have seen in the previous 
section, we have to search a “key polynomial” by trial and 
error to decompose an ideal. In contrast, GTZ algorithm 
enables us to find such a key in a more rational way.

Definition 6.1

•	 A maximal ideal [ ]1,...,M nI K x x⊂  is called in general 
position with respect to the lexicographical ordering 
>  with 1 ... nx x> > , if there exist [ ]1,..., n ng g K x∈  such that

( ) ( ) ( )( )1 1 1 1,..., ,M n n n n n nI x g x x g x g x− −= + + .

•	 When an ideal is decomposed by primary ideal 
decomposition 1 sI Q Q∩ ∩= 

, the prime ideals i iP Q=  
are called associated primes of I. iP  is a minimal associated 
prime of I  if i jP P≠  for all j i≠ .

•	 A zero-dimensional ideal [ ]1,..., nI K x x∈ is called in general 
position with respect to the monomial order >  with 

1 nx x> ), if all associated primes 1,..., sP P  are in general 
position and [ ] [ ]i n j nP K x P K x≠∩ ∩  for i j≠ .

Theorem 6.1 (Zero-dimensional Decomposition) Let 
[ ]1,..., nI K x x∈  be a zero-dimensional ideal. Let ( ) [ ]nf I K x= ∩ , 

1
1

s
sf f f νν=   with i jf f≠  for i j≠ . Then the decomposition of 

ideal I  is given by

1

( , )
=

=


i

s
v

i
i

I I f .

If I is in general position with respect to the monomial 
order >  with 1 ... nx x> > , then ( ), iI f ν  are primary ideals for 
all i .

Theorem 6.2 (Ideal decomposition in general case) Let
( )1,..., nX x x= . Let [ ]I K X  be an ideal, and let u X⊂  be a 

maximal independent set of variables for I . Then these 
statements hold.

i)	 The ideal ( )[ \IK u X u ] generated by I in ( )[ ]\K u x u  is zero-
dimensional. We denote the field of rational functions on 
K with variables u by ( )K u .

ii)	 Let { }1,... sg g I⊂  be a Gröbner basis of ( )[ ]\IK u x u . Let
( ) ( )( ) [ ]1lcm lc ,..., lc sh g g K u= ∈ . Then ( )[ ] [ ]\ :IK u x u K x I h∞=∩ . 

If 1: : +=d dI h I h , then ( : ) ( , )d dI I h I h= ∩ .

iii)	If ( )[ ]\IK u X u = 1 sQ Q∩ ∩  is an irredundant 
primary decomposition, then ( )[ ] [ ]\IK u x u K X∩  

[ ]( ) [ ]( )1 ... sQ K X Q K X= ∩ ∩∩ ∩  is also an irredundant primary 
decomposition.

Example 6.2 Consider ,I x ey y ex= + +  in [ ], ,x y e  with 
lexicographic order x y e> > . We know a Gröbner basis of 
I is ( ){ }2 1 ,y e x ey− + .

•	 Choose { }u y= as a maximal independent set of variables.

•	 ( )[ ] ( )2, 1,I y x e e x ey= − + . This ideal is a Gröbner basis in
( )[ ],y x e .

•	 Then ( ) ( )( )2 2lcm lc , lc1− += =e x eyh xe .

•	 [ ]
2 2

, ,: : : ( 1, ) x y eJ I h I h e x ey= = = − +  . And ( ) ( ) ( )2, , , ,I h x ey y ex xe x y= + + = . 
We have a decomposition ( ) ( ): ,I I h I h= ∩ .

•	 We decompose J . As J  is zero-dimensional in ( )[ ], ,y x e  
we apply the algorithm in zero-dimensional case. 
Since ( ) ( )2 1 1 1− = + −e e e , the decomposition of J  is given by

( )( ) ( )( ) ( ) ( ), 1 , 1 1, 1,J J e J e e x y e x y= + − = + − − +∩ ∩ . As the ideal J
is in general position with respect to lexicographic order 
x e>  in ( )[ ],y x e , ( )( ), 1+J e  and ( )( ), 1−J e  are primary ideals. 
Notice that we are working in ( )[ ],y x e . However, as the 
decomposition of [ ], ,J x y e  inherits that of ( )[ ],J y x e , 
we have obtained the required decomposition.

Triangulation of polynomial system
In case of the systems of polynomial equations 
( )1 2{ , ,... | 1... }i np x x x i m=  which have only finitely many 

solutions (i.e. to be zero-dimensional), several methods 
methods are proposed [45,47] which decompose the 
solution set into finitely many subset of the triangular form 
with respect to the variables entries,

{ }1 1 1 1 2 1 2( ), ( , ),..., ( , ,... ) 1,...=l l l
n nf x f x x f x x x l L

This kind of algorithm is used in the application of 
algebraic geometry in molecular orbital theory as is 
demonstrated in section 3, instead of conventional linear 
algebra.

Let us review the triangular decomposition algorithm by 
Möller [45]. The algorithm is based upon several lemmas.

Lemma 6.1 (Lemma 2 in [45]) Let A be an ideal in a ring 
[ ]1,..., nR x x=  such that Krull dimension of the residue 

class ring /R A is zero : ( )/ 0dim R A = . If B  is an ideal such that 
B A⊂  and if m∈  is sufficiently large, the affine algebraic 
set ( )V A is the disjoint union: ( ) ( ) ( ): mV A V A B V B= ∪  with

( ) ( ) ( ){ | : 0}V B y V A b B b y= ∈ ∀ ∈ =

( ) ( ) ( ): { | : 0}mV A B y V A b B b y= ∈ ∃ ∈ ≠ .

(The definition of ( )V B of this theorem, given in [45], is 
slightly different from the conventional one. In this section 
only, we use this definition.)

Lemma 6.2 (Lemma 3 in [45]) Let A is a ideal in a ring R  such 
that Krull-dimension of /R A equals to zero ( )dim / 0k R A =  
and let B  be another ideal in R  such that ( )1,..., sA B g g⊆ = . 
Then, for sufficiently large 1, ,..., sm m m ∈
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( ) ( )( )1 1
1

: ( ,..., : i

s
mm

i i
i

V A B V A g g g−
=

= +


.

with ( )( ) ( ) ( ) ( ) ( )1 1 1 1( ,..., : { | ... 0 }.im
i i i iV A g g g y V A g y g y g y− −+ = ∈ = = = ≠  

In addition, if A is a radical ( A A= ), the above relation holds 
for all positive 1, ,..., sm m m .

Lemma 6.3 (Lemma 5 iii) in [45]). Let ( )1 1
0

: ,...,
i

i

d
d j

i ij n n
j

f g x x x −
−

=

=∑   
with nonzero polynomials ijg , 1,...,i r= . If { }1: ,..., rF f f= is a 
Gröbner basis with respect to a monomial order <, then 

{ }10 0,...=   rG g g  is a a Gröbner basis with respect to <.

Lemma 6.4 (Lemma 7 in [45]). Let { }1: ,..., rG f f= be a reduced 
Gröbner basis with respect to a monomial order <, where nx  
is lexicographically in front of { }1 1,.., nx x − , and let

( )1 1
0

: ,...,
i

i

d
d j

i ij n n
j

f g x x x −
−

=

=∑ 

with nonzero polynomials ijg , 1,...,i r= , and 
( ) ( )1rlt f lt f< < . If 10g  is a constant, then the ideal quotient 

( )2 1,..., :rf f f  has the Gröbner basis (with respect to <) 
{ }2 0,..., rg g   and ( )1 2 ,... }rf f f∉ .

Indeed, if { }1,..., rf f  generates a zero-dimensional ideal, 
10g is constant by Lemma 6 in [45].

The algorithm is summarized as follows:

Let [ ]1( ,..., nA R x x⊂ ) be a zero-dimensional ideal with a 
reduced Gröbner basis { }1,..., rf f  with respect to a monomial 
order <. Let B: = (f2,...,fr): f1+(f1). Then V (A) is the union 
as V (A) = V (A:Bm) ∪V (B). (It is easily checked that for 
ideals I, J, the relation V(I∩J) = V(I)∪V(J) holds. Hence the 
decomposition of the affine algebraic set is equivalent to that 
of ideal: K I J= ∩ .) The varieties involved in the union have 
following properties.

For ( )V B (which is one of the components of the 
decomposition), it holds that ( ) ( ) ( )1 2 ,..., rV B V f V f f= ∩   and 
{ }2 ,..., rf f   is a reduced Gröbner basis.

By lemma 4.4, ( ): mV A B is the disjoint union of the zero-
zets,

( ) ( )( )( ) ( )( )( )1 2
1 1 2 1 2 1: , : ,..., , ,..., : rm m m

r rV A f V A f f V A f f f f−+ +   

These sets are other components of the decomposition 
of ( )V A .

( )1( : )mV A f =∅  (because 1f A∈ ): this item is removed.

The Gröbner bases are computable for the ideals
( ) 2

1 2: mA f f+  , ... , 1 2( ,A f f+   , ..., 1)) : rm
r rf f−
  . These Gröbner 

bases are in [ ]1 1,..., nR x x − (where the dimension is exactly 
dropped by one). Therefore we go down into [ ]1 1,..., nR x x −

and in this ring we have the set of ideals which are to be 
processed again.

Iteratively we apply the algorithm to the set of ideals and 
drop the variable one by one; the process shall terminate 
after finite steps.

Let us consider the problem
2 2 2 2

1 2 3, , 1f x y e f y x e f x y= + = + = + −

The reduced Gröbner basis with respect to the 
lexicographic order x y e> > is given by

2 2
1 2

2 3 4 2
3 4

, 2 2 1,

2 2 , 2

p x y e p y ye e
p ye y e e p e e
= + + = + + −

= + + + = − −

We apply the triangulation to ( )0 1 2 3 4, , ,A p p p p= . For 
variable x , it exists only in p1. Thus p1 should be added in 
all components of the decomposition. We only decompose 
the smaller system ( )2 3 4, ,A p p p . For the variable y , 

2
3 2 2p e= + , 4 2

4 2p e e= − − . By the removal of the redundant 
term, the simpler Gröbner basis for ( )3 4,p p   is, which is also 
a Gröbner basis of ( )3 4 2, :p p p .

As for the decomposition ( ) ( ) ( )2( : 1)mV A V B V A e= ∩ + , 
the components are given as

( ) ( )
( ) ( )

3 4 2 2

2 2 2 2 2

, :

1,2 2 1 1, 1

B p p p p

e y ye e e y ye

= +

= + + + − = + + −
and

( ) ( )2 2: 1 2,2A e e y e+ = − +

Indeed, the last statement implies the saturation: since, 
for 1,2,...m = ,

( )2 2: ( 1) 2,2mA e e y e+ = − +
Thus we obtain the decomposition of ( )1 2 3 4, , ,f f f f  as the 

intersection of ( )2 2
11, 1,e y ye p+ + +  and ( )2

12, 2 ,e y e p− + .

Simple Example of The Molecular Orbital 
Method by Means of Algebraic Geometry

Let us execute molecular orbital computation by means 
of algebraic geometry. The example is a hexagonal molecule, 
like benzene, where s-orbital is located at each atom and 
interacts only with the nearest neighbors. as is depicted in 
Figure 4.

The secular equation for a hexagonal molecule, like a 
benzene, could be given by the simplest model:

A5

A6

A1 A2

A3

A4

Figure 4: The framework of a hexagonal molecule. The atoms are indexed 
as 1 6,...,A A  and they interact between nearest neighbors, as are indicated by 
the bonds.
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1 1

2 2

3 3

4 4

5 5

6 6

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0

c cT T
c cT T
c cT T
c cT T
c cT T
c cT T

ε

    
    
    
    

=    
    
    
            

We place one orbital in each of the vertex of the hexagon; 
we assume the interaction between the nearest neighbors 
with the hopping parameter T; the wavefunction is given by 
the coefficients ( )1 6,...,c c  to six atomic orbitals. (We assume 
the following model: 

6

1
i i

i

C aψ
=

=∑  such that ,i j i ja a δ= ; and 
6

1
1

i i
i

H a T a +
=

=∑  in the hexagonal closed graph with 7 1a a= .)

The corresponding energy functional is given by

2 1 3 3 2 4 4 3 5

5 4 6 6 5 1 1 6 2
2 2 2 2 2 2
1 2 3 4 5 6

 = (  + ) + (  + )+ (  + )
+ (  + ) + (  + ) + (  + )

- ( + + + + + -1)

U Tc c c Tc c c Tc c c
Tc c c T c c Tc c c
e c c c c c c

The ideal from the secular equation is represented as:

I=(-2*c1*e+2*c2*T+2*c6*T,

2*c1*T-2*c2*e+2*c3*T,

2*c2*T-2*c3*e+2*c4*T,

2*c3*T-2*c4*e+2*c5*T,

2*c4*T-2*c5*e+2*c6*T,

2*c1*T+2*c5*T-2*c6*e,

-c1^2-c2^2-c3^2-c4^2-c5^2-c6^2+1).

We assume that

[ ]1 2 3 4 5 6, , , , , , , ,I c c c c c c T e U⊂
with the lexicographic monomial order

1 2 3 4 5 6c c c c c c T e U> > > > > > > >

The Gröbner basis is given in Table 2:

The first entry of the list in Table 2 shows the relation 
between the energy e and the hopping integral T. Then the 
polynomials including other variables (c6, c5,...., c1) appear in 
succession. This is the example of variable elimination.

Let us evaluate the energy functional U. For this purpose, 
we make a new ideal ( )I f+ with a polynomial f which 
equates the variable U and the definition of the energy 
functional at 0f = :

2 1 3 3 2 4 3 4 3 5

5 4 6 6 5 1 1 6 2
2 2 2 2 2 2
1 2 3 4 5 6

 = (  + ) + (  + ) + (  + )
       + (  + ) + (  + ) + (  + )

       - ( + + + + + -1)-

f Tc c c Tc c c c Tc c c
Tc c c T c c Tc c c
e c c c c c c U

The Gröbner basis of the ideal ( )I f+ is given in Table 3. The 
first polynomial gives the relation between the total energy 
U and the hopping integral, while the other variables are 
swept into remaining polynomials. Consequently, it follows 
that, by means of symbolic computation, we have executed 
the molecular orbital computation and have obtained the 

_[1]=e^4-5*e^2*T^2+4*T^4

_[2]=6*c6^2*e^2-6*c6^2*T^2-e^2+T^2

_[3]=2*c5*e^2*T-2*c5*T^3-c6*e^3+c6*e*T^2

_[4]=c5*e^3-c5*e*T^2-2*c6*e^2*T+2*c6*T^3

_[5]=4*c5^2*T^2-4*c5*c6*e*T-4*c6^2*e^2

+8*c6^2*T^2+e^2-2*T^2

_[6]=4*c5^2*e-4*c5*c6*T+4*c6^2*e-e

_[7]=24*c5^2*c6^2*T-4*c5^2*T-24*c5*c6^3*e

+4*c5*c6*e+24*c6^4*T-10*c6^2*T+T

_[8]=24*c5^4*T-16*c5^3*c6*e+16*c5^2*c6^2*T

-10*c5^2*T+8*c5*c6^3*e+2*c5*c6*e-4*c6^2*T+T

_[9]=c4*T-c5*e+c6*T

_[10]=c4*e+12*c5^3*T-8*c5^2*c6*e+8*c5*c6^2*T

-4*c5*T+4*c6^3*e

_[11]=c3*T-c4*e+c5*T

_[12]=c3*e-4*c4^2*c5*e+12*c4^2*c6*T+4*c4*c5^2*T

-8*c4*c5*c6*e+12*c5^2*c6*T+8*c6^3*T-4*c6*T

_[13]=c2*T-c3*e+c4*T

_[14]=c2*e-c3*T+c5*T-c6*e

_[15]=c1*T+c5*T-c6*e

_[16]=c1*e-c2*T-c6*T

_[17]=c1^2+c2^2+c3^2+c4^2+c5^2+c6^2-1

Table 2: Gröbner basis of the secular equation of the hexagonal molecule.

_[1]=4*T^4-5*T^2*U^2+U^4

_[2]=e-U

_[3]=12*c6^2*T^2-12*c6^2*U^2-e^2+3*e*U-2*T^2

_[4]=c5*T^2*U-c5*U^3+c6*e^2*T-2*c6*T^3+c6*T*U^2

_[5]=2*c5*T^3-2*c5*T*U^2+c6*e^3-2*c6*e*T^2+c6*T^2*U

_[6]=4*c5^2*U-4*c5*c6*T+4*c6^2*e-e

_[7]=4*c5^2*T^2-4*c5*c6*e*T-4*c6^2*e*U+8*c6^2*T^2+e*U-2*T^2

_[8]=24*c5^2*c6^2*T-4*c5^2*T-24*c5*c6^3*e+4*c5*c6*e

+24*c6^4*T-10*c6^2*T+T

_ [ 9 ] = 2 4 * c 5 ^ 4 * T - 1 6 * c 5 ^ 3 * c 6 * e + 1 6 * c 5 ^ 2 * c 6 ^ 2 * T -
10*c5^2*T+8*c5*c6^3*e

+2*c5*c6*e-4*c6^2*T+T

_ [ 1 0 ] = c 4 * U + 1 2 * c 5 ^ 3 * T - 8 * c 5 ^ 2 * c 6 * e + 8 * c 5 * c 6 ^ 2 * T -
4*c5*T+4*c6^3*e

_[11]=c4*T-c5*e+c6*T

_[12]=c3*U-4*c4^2*c5*e+12*c4^2*c6*T+4*c4*c5^2*T-8*c4*c5*c6*e

+12*c5^2*c6*T+8*c6^3*T-4*c6*T

_[13]=c3*T-c4*e+c5*T

_[14]=c2*U-c3*T+c5*T-c6*e

_[15]=c2*T-c3*e+c4*T

_[16]=c1*U-c2*T-c6*T

_[17]=c1*T+c5*T-c6*e

_[18]=c1^2+c2^2+c3^2+c4^2+c5^2+c6^2-1

Table 3: The Gröbner basis of the ideal ( )  I f+ .
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[1]:(p1)

      _[1]=T

      _[2]=e

      _[3]=c1^2+c2^2+c3^2+c4^2+c5^2+c6^2-1

[2]:(p2)

      _[1]=e-T

      _[2]=4*c5^2-4*c5*c6+4*c6^2-1

      _[3]=c4-c5+c6

      _[4]=c3+c6

      _[5]=c2+c5

      _[6]=c1+c5-c6

[3]:(p3)

      _[1]=e+T

      _[2]=4*c5^2+4*c5*c6+4*c6^2-1

      _[3]=c4+c5+c6

      _[4]=c3-c6

      _[5]=c2-c5

      _[6]=c1+c5+c6

[4]:(p4)

      _[1]=e+2*T

      _[2]=6*c6^2-1

      _[3]=c5+c6

      _[4]=c4-c6

      _[5]=c3+c6

      _[6]=c2-c6

      _[7]=c1+c6

[5]:(p5)

      _[1]=e-2*T

      _[2]=6*c6^2-1

      _[3]=c5-c6

      _[4]=c4-c6

      _[5]=c3-c6

      _[6]=c2-c6

      _[7]=c1-c6

Table 4: Primary ideal decomposition of ideal ( )  I f+ . The ideal 
decomposes into ve primary ideals, each of which is represented by the 
generators.

observable quantities: if we give T , we determine the 
total energy U and we have the relations for the variables 
of the wave-function and the eigenvalue e . As for the 
wave-function, there is a particular feature in the symbolic 
computation, which will be discussed later.

Now let us see how the primary ideal decomposition 
works. The decomposition for ideal ( )I f+  is given 
in Table 4. Each entry in the list is the primary ideal
{ | 1,...,5}ip i = , the intersection of which shall build the 
polynomial ideal of secular equation 

5

( 1)

)i
i

I p
=

=


.

Table 5 gives the Gröbner basis for the ideal ( )( )ip f+  

[1](p1+(f))

_[1]=U

_[2]=T

_[3]=e

_[4]=c1^2+c2^2+c3^2+c4^2+c5^2+c6^2-1

[2](p2+(f))

_[1]=T-U

_[2]=e-T

_[3]=4*c5^2-4*c5*c6+4*c6^2-1

_[4]=c4-c5+c6

_[5]=c3+c6

_[6]=c2+c5

_[7]=c1+c5-c6

[3](p3+(f))

_[1]=T+U

_[2]=e+T

_[3]=4*c5^2+4*c5*c6+4*c6^2-1

_[4]=c4+c5+c6

_[5]=c3-c6

_[6]=c2-c5

_[7]=c1+c5+c6

[4](p4+(f))

_[1]=2*T+U

_[2]=e+2*T

_[3]=6*c6^2-1

_[4]=c5+c6

_[5]=c4-c6

_[6]=c3+c6

_[7]=c2-c6

_[8]=c1+c6

[5](p5+(f))

_[1]=2*T-U

_[2]=e-2*T

_[3]=6*c6^2-1

_[4]=c5-c6

_[5]=c4-c6

_[6]=c3-c6

_[7]=c2-c6

_[8]=c1-c6

Table 5: Gröbner basis for the ideals i  + ( )p f .



www.innovationinfo.org

J Multidis Res Rev 2019 72

Ideal dim (R/I)k

1  + ( )p f 5

2  + ( )p f 2

3  + ( )p f 2

4  + ( )p f 1

5  + ( )p f 1

Table 6: The dimension of the ideals i  + ( )p f .

The first entry gives the linear relation between the 
total energy U  and the hopping parameter T . This is the 
improvement in the result by the use of primary ideal 
decomposition; in Table 3 of the Gröbner basis, we have 
obtained the relation between U  and T , but the polynomial 
is not decomposed yet.

The dimension of the ideals is given in Table 6. (We refer 
to the Krull dimension of the quotient ring by an ideal by the 
phrase “dimension of the ideal” according to the custom of 
computational algebraic geometry.)

As for ( )1 +p f , the affine algebraic set is determined by 
U T e= = =  and 2 2

1 6 1c c+ + = ; thus there are five degrees of 
freedom for ( )1 6,..,c c . As for ( )p f  and ( )5p f+ , the only one 
indeterminate is the hopping integral T , which contribute 
one to the dimension of the ideal; ( )1 6,...,c c is determined up 
to sign. As for ( )2p f+  and ( )p f , the hopping integral T is 
still an indeterminate and contributes one to the dimension; 
( )1 6,...,c c is not determined explicitly, unless 5c or 6c would be 
explicitly given in the quadratic equation in the list (which is 
one-dimensional geometrical object). In this circumstance, 
the dimension of the ideal rises by one. The increase of 
the dimension in the cases of ( )2p f+  and ( )3p f+  is, by the 
familiar phrase of physics, due to the degeneracy in the 
eigenvalue. For such cases in the numerical computation, 
the solvers automatically return the ortho-normalized 
basis vectors. The numerical library determines them by an 
arbitrary way. However, by summing up the degenerated 
eigenstates with the equal weights, one can compute the 
observable quantum mechanical quantity which is free from 
this sort of ambiguity. In contrast, the symbolic computation 
processes the equation up to the “minimal” polynomials 
of the variables of the wave-functions and it does not 
anymore. The wave-functions are, however, non-observable 
quantities; one can eliminate them from the polynomial 
equations by symbolic computation so that one could obtain 
only observable quantities, such as energy. In fact, it is not 
always true that the degeneracy of eigenvalues should lead to 
non-zero-dimensional character of eigenspace: for example, 
consider the following polynomial as the energy functional:

( ) ( ) ( )
( ) ( )

1 2 3 2 1 3 3 1

4 4 4 4 4 4 2 2 2
1 2 2 3 3 1 1 2 3

2

1

f c c c c c c c c c

c c c c c c e c c c

= − + − + − +

+ + + − + + −

The local energy minima are represented by discrete 
points (not continuous) both in real and in complex number. 

For example, 3 / 2e = −  is the eigenvalue with six fold degen-
eracy and the corresponding eigenvectors are discrete (as 
zero-dimensional ideal) as follows:

( ) ( ) ( ) ( )1 2 3, , 1/ 2, 1/ 2,0 , 1/ 2,0, 2 , 0,1/ 2, 2c c c = ± − ± − ± −

Outlook for Related Topics
We have seen how the computational algebraic geometry 

could be applied to the molecular orbital theory, in so far as 
the equations could be represented by polynomials. In this 
section, we will see the related topics on the symbolic com-
putation by means of polynomials.

Polynomial optimization
Polynomial optimization is a numerical method which 

solves the optimization problem given by polynomial 
equations and inequities [47,48-51].

Example 8.1 Consider the cost function ( )1 2 2,g x x x= and the 
constraints 2 2

1 1 25 0f x x= − − ≥ , 2 1 21 0f x x= − ≥ , 3 1 2 0= − ≥f x x .

The problem is given by:

Maximize the cost multivariate polynomial function ( )g x

with the constraint of multivariate polynomial function 
( )if x ≥  0.

In other words, the cost function g  is to be maximized in 
the semi-algebraic set defined by 1f , 2f  and 3f , as in Figure 5.

The key idea is to replace the monomials 1 2
i jx x  with 

variables ijy . The variables should satisfy relations such as 
, , ,p q r s p q r sy y y + +=  and 00 1y = . Let us define the first-order 

moment matrix in the following style:

10 01

1 10 20 11

01 11 02

1
( )

y y
M y y y y

y y y

 
 =  
 
 

By means of the formalism of the polynomial optimization, 
the problem is restated as follows.

3

2

1

0

-1

-2

-3
-3          -2          -1            0            1            2           3 

Figure 5: The curves 2 25- -  = 0x y , y x= , 1 0xy− =  are depicted. The 
y-coordinate of the upper-right intersection point between the diagonal line 
and the hyperbola gives the solution of the optimization problem presented 
in the main article.
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Maximize the linear cost function 01y ,

With the constraint that the moment matrix ( )1M y  is 
semi-positive definite,

With the constraint of multivariate polynomial functions:
1 20 025 0f̂ y y= − − ≥ , 2 111 0f̂ y= − ≥ , 3 10 01 0f̂ y y= − ≥

In the above, the constraint of the moment matrix comes 
from the semi-positive-definiteness of the quadratic form:

2 2

1 1 ,

0 i i i i i j ij
i i i j

c x c x c c y
= =

  
≤   
  
∑ ∑ ∑

Hereafter we denote the semi-positive definiteness of a 
matrix M  as 0M  .

The optimization problem is solved by the standard way 
of semi-positive-definite programming. We can formulate 
the dual problem also. In general, it is not guaranteed that 
the use of the first-moment matrix would suffice to give the 
correct answer; indeed the formulation should be given 
in the matrices of infinite dimension, which include the 
moments of higher orders up to the infinity. In addition, 
in the above formulation, there is no constraint for the 
condition , , ,p q r s p q r sy y y + += . We only expect that the moment 
matrix would be reduced into the one with lower and 
suitable rank at the optimum. Actually, the above procedure 
is an approximation and the accuracy is improved by the use 
of larger matrices.

Let ( ) ny yα α∈
=  , where yα  represents 1

1x ... n
nx xααα = . Let 

denote the degree of ( )yα  as 
1

n

i
i

α α
=

=∑ . We try to optimize the 
problem in the limited range of ( ) nyα α∈ , such that 2rα ≤ .

For ( )1 1
, ,...,

N
y y y yα α α= (such that 2N rα ≤ ), the r-th order 

moment matrix ( )rM y  is constructed as follows:

( )[ ]1,1 1rM y = ,

( )[ ],1
irM y i yα= ,

( )[ ]1,
irM y i yα= ,

( )[ ],
i jrM y i j yα α+= ,

where the index i, j are taken in the range such that i rα ≤ .

Let ( )p x  be the polynomial constraint :

( ) x
beta

p x c β
β=∑

For ( )p x , the localizing matrix is defined by:

( )[ ],
i jsM py i j c yβ α α β

β
+ +=∑

where the index ,i j  are taken in the range such that
i sα ≤ . This matrix should be semi-positive definite, too.

In general, a global polynomial optimization problem is 
given by

* min ( ) xyp F x f α
α α= =∑

such that ( ) 0iG x ≥ , 1,2,...i = .

Assume that the degree of ( )ig x  to be 2 1id −  or 2 id . In 
correspondence to the above global polynomial problem, 

The relaxation of order k is stated in this way:

* mink yp f yα
α α= ∑

such that ( ) 0kM y 

and ( ) 0
ik d iM G y−  , 1,2,...i =

It is guaranteed that, as the degree k  increases, the 
optima *

kp  converges to the global optimum p.

Example 8.2 Let us compute these matrices.

The second-order moment matrix is given by

10 01 20 11 02

10 20 11 30 21 12

01 11 02 21 12 03
2

20 30 21 40 31 22

11 21 12 31 22 13

02 12 03 22 13 04

1

( )

y y y y y
y y y y y y
y y y y y y

M y
y y y y y y
y y y y y y
y y y y y y

 
 
 
 

=  
 
 
 
 

The higher-order moment matrices are computed 
likewise.

The localizing matrices are computed for the polynomials
1f , 2f  and 3f  in the example problem.

For 2 2
1 1 25f x x= − − ,

20 02 10 30 12 01 21 03

1 1 10 30 12 20 40 22 11 31 13

10 21 02 11 31 13 02 22 04

5 5 5
( ) 5 5 5

5 5 5

y y y y y y y y
M f y y y y y y y y y y

y y y y y y y y y

− − − − − − 
 = − − − − − − 
 − − − − − − 

For 2 1 21f x x= − ,

11 10 21 01 12

1 2 10 21 20 20 31 11 22

01 12 11 22 02 13

1
( )

  

y y y y y
M f y y y y y y y y

y y y y y y

− − − 
 = − − − − 
 − − − 

For 3 1 2f x x= − ,

10 01 20 11 11 02

1 2 20 11 30 21 21 12

11 02 21 12 12 03

( )
y y y y y y

M f y y y y y y y
y y y y y y

− − − 
 = − − − 
 − − − 

Observe that these localizing matrices include the entries 
of the second order moment matrix and do not contain 
superfluous ones. We can optimize the given problem 
concisely with the use of ( )2M y , ( )1 1M f y , ( )1 2M f y , ( )1 3M f y .

As is demonstrated in [2], once the molecular orbital 
theory has been built over the polynomial system on the 
ground of algebraic geometry and commutative algebra, it 
enables us to joint the equation of conventional quantum 
mechanics and the extra constraints into a set of polynomial 
equations. We solve the problem through the collaboration 
of numerical and symbolical methods. The computational 
scheme is basically to determine the affine algebraic set 
described by the set of equations. However, it is somewhat 
inconvenient that we should use only equations for the 
general optimization problem. It seems that polynomial 
optimization could get over such limitations because it could 
deal with the constraints by inequities in the semi-algebraic 
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set. The mathematical ground is “real algebraic geometry” 
which contains a various range of interests.

Quantifier elimination
When we deal with equations and inequities of 

polynomials, we often ask ourselves about the existence of 
the solutions. For example, under what condition would a 
quadratic equation have roots? The “quantifier elimination” 
(QE) is the computational process to answer this sort of 
questions: when the question is given by ( )2. 0x x bx c∃ ∈ + + =
, the computer eliminates the quantifier (∃ ) and returns the 
simplified form 2 4 0b ac− ≥  as the answer. In fact, there are 
general theories for executing such sort of simplifications, 
proposed by several mathematicians, such as by Fourier, by 
Motzkin, and by Tarski [52,53], or Presburger arithmetic. 
But those algorithms are not practical. Afterward, more 
practical algorithms by Collins and by others have come into 
use, called “Cylindrical Algebraic Decomposition” (CAD). The 
theoretical ground of the standard algorithm in Algebraic 
Cylindrical Decomposition are given in [46,54-58]. There 
are several computer packages in which this algorithm is 
implemented, such as QEPCAD [59], Mathematica [60], 
Maple [61], and Reduce [62].

Since CAD algorithm is apparently related to the theme 
of this article, let us review the computational procedure in 
this section. Let us consider the problem through a simpler 
example of quantifier elimination:

( )2. 1 0a x ax∃ + + = .

We can simplify the above prenex form into the one 
without quantifier, such as 2 4 0a − ≥ .

The cylindrical algebraic decomposition analyses the 
critical point of ( ) 2, 1 0f a x x ax= + + =  in two-dimensional 
real a x−  plane. The critical points are the solutions of 
( ) 2, 1 0f a x x ax= + + =  and ( ),

2
f a x

x a
x

∂
= +

∂
. They are also the 

solution of 2 1 0x ax+ + = , 2 0x a+ =  and ( )2 0x x a+ = . Thus 
we obtain the matrix equation:

21 1 0
2 0 0
0 2 1 0

a x
a x

a

    
    =    

        
The determinant of the matrix in the left-hand side 

is the discriminant of ( ),f a x . If it is zero, the matrix 
equation would permit non-zero vector solution. Hence 
we project the polynomial in one ring into a polynomial 
in another ring of lower dimension (Projection step). We 
now analyse the projected polynomial (the discriminant) 
in order to inquire after the existence of the root. As the 
discriminant is 24 a− , we can divide the a-axis into five cells: 
( ) { } ( ) { } ( ), 2 , 2 , 2, 2 , 2 , 2,−∞ − − − ∞ so that each of them gives the 
distinct sign of the discriminant.

Let us build the set of cylinders in a-x plane which pass 
through each cells in a-axis. They are given by

( ) ( ) ( ), , 2 ,a x ∈ −∞ − × −∞ ∞ ,

( ) { } ( ), 2 ,∈ − × −∞ ∞a x ,

( ) ( ) ( ), 2, 2 ,a x ∈ − × −∞ ∞ ,

( ) { } ( ), 2 ,a x ∈ × −∞ ∞ ,

( ) ( ) ( ), 2, ,a x ∈ ∞ × −∞ ∞ .

In each cylinder, we should check the zeros and the sign 
condition of ( ) 2, 1f a x x ax= + +  in a x−  plane. The solutions 
of ( ),f a x are listed as follows.

( ), 2a∈ −∞ − : the solutions are ( )2
1 4 / 2x a a= − − −  and

( )2
2 4 / 2x a a= − + − .

2a = − : the solution is 1 1x = .

( )2,2a∈ − : no solution.
2a = : the solution is 1 1x = − .

( )2,a∈ − ∞ : the solutions are ( )2
1 4 / 2x a a= − − −  and 

( )2
2 4 / 2x a a= − + − .

(In the actual computation, we do not try to obtain such 
analytic solutions in uplifting step. Instead, we place one 
sampling point, say sa , in each subdivision, and we inspect 
the sign condition and the solution of univariate polynomial
( ),sf a x . )

The cylinders are again divided into cells according 
to the sign condition of ( ),f a x . For example, the cylinder 
( ) ( ), 2 ,−∞ − × −∞ ∞  is divided by five cells:

( ) ( )1, 2 , x−∞ − × −∞ ;

( ) { }1, 2 x−∞ − × ;

( ) ( )1 2, 2 ,x x−∞ − × ;

( ) { }2, 2 x−∞ − × ;

( ) ( )2, 2 ,x−∞ − × ∞ .

For other cylinders, we construct the cells likewise, 
as is illustrated in Figure 6. These cells in a-x plane are 

4

3

2

1

0

-1

-2

-3

-4
-4       -3      -2       -1        0        1        2        3        4

Figure 6: The cylindrical algebraic decomposition for 2  1x ax+ + . The 
vertical and horizontal axes represent the variables x and a respectively. 
The zone is decomposed into cells by the solid lines and curves; each cell 
is distinguished from others by the sign conditions of two polynomials, 

2  1x ax+ +  and 2 4a − .
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distinguished by the sign conditions of ( ), 1f a x x ax= + +
and 2dis( ) 4= −f a . Then we seek the cells which would 
satisfy the condition of the first question about the existence 
of the roots of 2 1 0x ax+ + = , and by joining the cells which 
satisfy the requirement, we find the answer: 2≤ −a  or 2a ≥ .

In general multivariate case of CAD, the algorithm 
executes the multi-step projection (from n-variables to one-
variable ) and uplifting (from an axis to the whole space).

There are examples of QE with the taste of molecular 
orbital theory. Let ( ), ,e x y  be the energy and the wavefunction 
of the simple diatomic system, such that

0 1
1 0

x x
e

y y
−    

=    −    
 

Example 8.3 2 2: 0 0 0 1 0 0..e e x ey y ex x y x y∃ < ∧ + = ∧ + = ∧ + − = ∧ + =

The prenex form inquires if the negative e (the energy) 
would exists in the diatomic molecule of asymmetric 
configuration 0x y+ = . The quantifier elimination 
concludes that the formula is

False .

Example 8.4

 2 2: 0 0 0 1 0 0e e x ey y ex x y x y∃ < ∧ + = ∧ + = ∧ + − = ∧ − =

The prenex form inquires if the negative e (the energy) 
would exists in the diatomic molecule of symmetric 
configuration 0x y− = . The quantifier elimination 
concludes that the formula is simplified as

2 2 1 0 0x y x y+ − = ∧ − =

This is the process of quantifier elimination. If the prenex 
form contains several polynomials ( )1 2{ , ,..., | 1,..., }j nf x x x j m=

, we have to compute the intersection of if  and jf  for i j≠
as well as the critical point of each if . The intersection is 
computed by projection by means of variable elimination, 
the tool of which is “resultant”. Assume that nx  are the 
uni-variate polynomials of nx , in which the coefficients are 
the polynomials of { }1 1,.., nx x − . In this assumption, the 
resultant for two polynomials

1
0 1

d d
dA a x a x a−= + + +

and
1

0 1
e e

eB b x b x b−= + + +

is the determinant of a square matrix of dimension d+e, 
defined as

0 1

0 1

0 1

0 1

0 1

0 1

0 0
0 0

0 0
0

0 0

0 0

d

d d

d

e

e

e

a a a
a a a

a a a
b b b

b b

b b b

−

−

 
 
 
 
 
 
 
 
 
 
  
 

 

 

      

 

  

  

      

 

in which the rows are made from the array of coefficients 
of { | 1,., , ,0}ix A i e= −  and { | 1,...,0}jx B j d= −  so that the 
product of the matrix and the vector ( )1, ,..., ,1d e d ex x x+ + −  
should give those set of polynomials. The discriminant of 
( )f x  is a special case as the resultant of ( )f x  and ( )df x

dx
.

We expect that quantifier elimination would be applicable 
to the molecular orbital theory when we give the polynomial 
representation to the problem. If the quantifier elimination 
goes well, we would obtain the polynomial representation of 
the solution of the optimization problem; we could render 
the zone and the boundary in the parameter space which 
shall satisfy our requirement; we might “reason” for the 
question of quantum mechanics by means of the rigorous 
foundation of logic. However, at present, the computer and 
the algorithm are still powerless; indeed the complexity of 
the algorithm, in the worst case, is double exponential in 
the number of variables . (This is because of the enormous 
number of combinations of polynomials in the process 
of variable-elimination.) Therefore we must expect some 
breakthrough both in algorithm and in computer architecture 
in order that we could apply quantifier elimination for the 
practical purpose.

Polynomial optimization and wave-geometry
In the above examples, we implicitly assume that all of the 

required ingredients are polynomials. They are generated 
by the method of quantum chemistry: by the use of localized 
atomic basis, the integrodifferential equation is converted 
into the secular equation of analytic functions, and the latter 
is furthermore approximated by polynomials. On the other 
hand, the fundamental equations of quantum mechanics 
always involve differential operators. Indeed the symbolic 
computation would be applicable to the algebra generated 
by variables and differentials (G-algebra); the Gröbner basis 
could be computed by extending the Buchberger’s algorithm 
(Mora’s algorithm [63]). However, G-algebra is rather a 
purely mathematical topic and it seems to be powerless in 
solving numerical problems.

For this issue, the aforementioned polynomial optimiza-
tions would give us some hint. The key idea is to replace the 
monomials in the equation with the variables of one-degree, 
and the latter variables are determined by the framework of 
semi-positive definite programming [64].

The algorithm of polynomial optimization is based on the 
measure theory. The variables of degree one, corresponding 
to the monomials 1 1

1 2X x xα αα = ⋅ , represent the integrals in 
the moment problem,

y X dα
α µ= ∫

by means of some probability measure µ , which satisfies
1dµ =∫ . We construct the entry of the moment matrix in the 

following form

,y X X dα β
α β µ= ∫

Instead of directly determining the measure, however, 
the algorithm computes the moments ,yα β  by utilizing the 
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constraints among them so that the objective function would 
be maximized.

This foundation of the algorithm has a great significance: 
it is plausible that, if we inspect the problem from the 
analogy of quantum mechanics, the measure dµ might be 
replaced by ( ) 2| |x dxφ  by a certain “wavefunction” φ , and 
the moments will be given by the expectation value in the 
sense of quantum mechanics. As the expectation values of 
the products of coordinate operators and the differential 
operators can be computed, we can extend the idea of the 
moment matrix. For the univarite case, the typical integrals 
are given by

( )i j
ijy x xφ φ=

or

:

j
i

i jy x
x

φ φ
 ∂ =    ∂  

.

Let us consider the simplest problem: the harmonic 
oscillator.

The total energy of the harmonic oscillator is given by the 
sum of squares of the kinetic-momentum operator p  and 
the coordinate operator 2 2:x H p x= + , with the relation:

[p,x] 1h= − −
In order to avoid the argument in the complex number, 

we make use of /u hd dx= , instead of p .

We define the extended moment matrix as

( )( )φ φ    =    ∫i j k l i j k lM x u x u x u x u dx

This sort of integral is rearranged by the linear 
combination of those terms

( )m n m nM x u x u dxφ φ  =  ∫ .

The the moment matrix (indexed by 1, ,x u ) is given as:

[ ]
[ ] [ ]

[ ]

1 0
/ 2

0 / 2

M x
M x M xx h

h M uu

 
 − 
 − − 

.

(In the above, [ ] [ ]M uu M uu− = −  due to the linearity of the 
constant.) In order to compute that matrix, we have used use 
the relations:

[ ][ ]1 0dM u h dx
dx
φ φ = = 

 ∫

[ ][ ] [ ]
2

2
2

d d dM u u h h dx h dx M uu
dx dx dx
φ φ φ φ

   = = − = −   
    
∫ ∫

[ ][ ] ( ) [ ]

[ ] .

d dM u x h x dx h x dx M ux
dx dx

dh x dx M xu h
dx

φ φ φ φ

φ φ

   = = − ⋅ = −   
   

 = − − = − − 
 

∫ ∫

∫
In order to see the necessity of / 2h , let us consider the 

quadratic form:

( ) ( ) ( )0au bx au bx dxφ φ+ + ≥      ∫
This quadratic form is represented by

[ ] [ ] [ ] [ ](
[ ] [ ]

( ) [ ]
[ ] ( )

2 2

2 2

)

/ 2
, 0

/ 2

a M uu b M xx ab M ux M xu

a M uu b M xx ab h

M uu h a
a b

h M zz b

− + + − + 
= − + −

 − −  
= ≥  −   

The semi-positive definiteness of the quadratic form is 
replaced by that of the matrix.

Semi-positive definiteness of the moment matrix 
demands these relations:

[ ] 0M xx ≥

[ ] 0M uu− ≥

[ ] [ ]
2

0
4
hM xx M uu− − ≥

det( ) 0≥

[ ] [ ] [ ] 0M xx M x M x− ≥

(The diagonal entries of the matrix are positive; the 
values of determinant of 2 by 2 minors, taken along the 
diagonal, are positive; and the determinant of the matrix is 
positive.)

With this condition, the optimum of [ ] [ ]E M uu M xx= − +
is obtained at [ ] [ ] 1

2
M xx M uu h= − =  and [ ] 0M x = . The solution 

might be obtained by several methods. The authors of this 
article (Kikuchi and Kikuchi) had tried several algorithms to 
solve them in the sequence of works: the solution by means 
of QE in [65]; by means of particle swarm optimization in 
[66]; by means of directly determining the measure µ itself 
in [67].

Maybe the significance of this algorithm is that one 
can “quantize” the polynomial equations by providing the 
variables { }ix  with the differential operators dh

dx
 
 
 

; the search 
of the roots of the polynomial ( )W x  is replaced by the ground-
state computation of the quantum Hamiltonian ( )

2
2

2

dH h W x
dx

= − +

; in the limit 0h → , the “probability distribution” of the 
quantum system shall coincide with the affine algebraic 
set ( )V W . It is not so audacious to say that we discover the 
seminal idea of “wave geometry”, which is the counterpart 
in mathematics to the “wave mechanics” in physics. In the 
middle of twentieth century, in fact, Mimura et al. proposed 
the idea of “wave geometry” [68]: their fundamental idea 
is to assume the line elements 2ds  in differential geometry 
as the operator in quantum mechanics, to which, therefore, 
the differential operator dh

ds
 is coupled. In contrast to that 

theory, our idea of “wave geometry” is based upon algebraic 
geometry, and we expect that our idea would be applicable 
to quantitative – numeric or symbolic – computation by 
means of powerful techniques developed for quantitative 
simulation of quantum dynamics and also by means of the 
modern theory of algebra.

Available Packages of Symbolic Computation
There are several packages of symbolic computation 

by which we can compute Gröbner bases or primary ideal 
decomposition.



www.innovationinfo.org

J Multidis Res Rev 2019 77

•	 CoCoA : Computer algebra system [69].

•	 GAP: Software for computational discrete algebra. The chief 
aim of the package is to execute the computation in the group 
theory, but it could process polynomials [70]. As for the 
application of GAP software in material physics, see the work 
of Kikuchi [71], and the article by Kikuchi and Kikuchi [72].

•	 Macaulay 2: Computer algebra system [73,74].

•	 Mathematica: Technical computing system for almost all 
fields of science and industry [60].

•	 Maple: Symbolic computation software for general 
purpose. The primary ideal decomposition is implemented 
at the package “Regular Chains Package” [61].

•	 Maxima: Symbolic computation software for general 
purpose [75].

•	 Reduce: Computer algebra system [62].

•	 SINGULAR: Computer algebra system [76]. It contains 
various libraries to solve the problems in algebraic 
geometry. It also contains the extension package “Plural” 
for non-commutative algebra. One can learn how to 
compute by Singular from introductory textbooks [40,77].

•	 As for quantifier elimination, also there are available 
packages.

•	 QEPCAD: A free software, which does quantifier 
elimination by means of Partial Cylindrical Algebraic 
Decomposition [59].

•	 Reduce

•	 Mathematica

•	 Maple

•	 There is a platform system which bundles several free 
software packages in mathematical science.

•	 SageMath: Open-Source Mathematical Software System. 
From this platform, one can utilize a lot of software 
packages both of numerical and symbolic computations 
(in which Gap, Maxima, and Singular are included) [78].

•	 There are a lot of research centers of symbolic 
computations. A great deal of computer algebra systems 
are the products of the studies over long years in several 
universities. One can find software implementations of 
the latest researches of INRIA in France:

•	 INRIA: l’institut national de recherche dédié aux sciences 
du numérique. The research programs, at the interplay 
of algebra, geometry and computer science, are ongoing 
now [79].

Summary
Dear readers, our voyage has now ended up the planned 

course. How do you think about the connection between 
quantum mechanics and algebraic geometry? We have found 
it even in the familiar region of quantum chemistry. Algebraic 
geometry is not a language of another sphere; it is a tool to solve 
actual problems with quantitative precision. Is it interesting for 
you? Or have you judged coldly that it is a plaything?

In this article, at first, we have demonstrated a model 
case of symbolic-numeric computation of molecular 
orbital theory with the taste of algebraic geometry. Then 
we have expounded the related mathematical concepts 
in commutative algebra and algebraic geometry with 
simple examples. In addition, we have introduced several 
mathematical and computational methods, which would 
be connected to this post-contemporary theory of quantum 
chemistry. The two main principles of the theory are to 
represent the involved equations by polynomials and to 
process the polynomials by computer algebra. Then one 
can analyze the polynomial equations and unravel the 
dependence between the variables. In the traditional 
molecular orbital theory, the principal mathematical tool is 
the linear algebra. Indeed, it is a subset of the commutative 
algebra. For instance, the diagonalization of the matrix and 
the orthonormality of eigenstates would be comprehensible 
in a wider context: the primary ideal decomposition. And 
the latter has a close relation to the other fundamental ideas 
in algebraic geometry: the resolution of singularity and 
the normalization of the variety. Besides, the polynomial 
approximation (inevitable in our theory) should ideally be 
embedded into the “completion” of commutative rings; we do 
this approximation with the finite number of symbols for the 
sake of facile computations in the limited resources. Without 
doubt, there are a lot of other concepts in commutative 
algebra and algebraic geometry which would be embodied 
in the application of computational quantum mechanics. You 
should Ask, and it will be given to you...

Or,

petite, et dabitur vobis; quaerite, et invenietis; pulsate, et 
aperietur vobis.

It will be a felicity for us, for the authors of this article, 
if you enjoy every bite of the “quantum chemistry with the 
view toward algebraic geometry” and if this article stirs 
your curiosity; we heartily greet your participation in the 
research of this new theme.
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