
Inno Journal of Multidisciplinary
Research and Reviews

Volume 1: 2
J Multidis Res Rev 2019

Multiple Scattering Theory for Polycrystalline Materials with Strong Grain 
Anisotropy: Theoretical Fundamentals and Applications

Huijing He* Department of Earth and Planetary Sciences, University of California, USA

Article Information
Article Type: Research
Article Number: JMRR119
Received Date: 30 September, 2019
Accepted Date: 18 October, 2019
Published Date: 25 October, 2019

*Corresponding Author: Huijing He, Department of Earth 
and Planetary Sciences, University of California, Santa 
Cruz, Santa Cruz, CA 95064, USA. Tel: + (1)614-556-
2251; Email: he.hui.jing(at)hotmail.com 

Citation: Huijing H (2019) Multiple Scattering Theory for 
Polycrystalline Materials with Strong Grain Anisotropy: 
Theoretical Fundamentals and Applications. J Multidis Res 
Rev Vol: 1, Issu: 2 (80-105).

Copyright: © 2019 Huijing H. This is an open-access 
article distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the 
original author and source are credited.

Abstract
This work is a natural extension of the author’s previous work: 

“Multiple scattering theory for heterogeneous elastic continua with 
strong property fluctuation: theoretical fundamentals and applications” 
(arXiv:1706.09137 [physics.geo-ph]), which established the foundation 
for developing multiple scattering model for heterogeneous elastic 
continua with either weak or strong fluctuations in mass density and 
elastic stiffness. Polycrystalline material is another type of heterogeneous 
materials that widely exists in nature and extensively used in industry. 
In this work, the corresponding multiple scattering theory for 
polycrystalline materials with randomly oriented anisotropic crystallites 
is developed. To validate the theory, the theoretical results for a series 
of materials such as OFHC copper, 304 stainless steel, and Inconel 600 
are compared to experimental measurements and the numerical results 
obtained using finite element simulations. Detailed analysis shows that 
the new theory is capable of predicting the dispersion and attenuation 
of polycrystals with satisfactory accuracy. The results also show the 
new model can give an estimate on the average grain size with a relative 
error equal to or less than ten percent. As applications in ultrasonic 
nondestructive evaluation, we calculated the dispersion and attenuation 
coefficient of one of the most important polycrystalline materials in 
aeronautics engineering: high-temperature titanium alloys. The effects of 
grain symmetry, grain size, and alloying elements on the dispersion and 
attenuation behaviors are examined. Key information is obtained which 
has significant implications for quantitatively evaluating the average 
grain size, monitoring the phase transition, and even estimating gradual 
change in chemical composition of titanium components in gas turbine 
engines. For applications in seismology, the velocities and Q-factors for 
both hexagonal and cubic polycrystalline iron models for the Earth’s 
uppermost inner core are obtained in the whole frequency range. Using 
the realistic material parameters of iron under the high temperature 
and high-pressure conditions calculated from ab initio simulations, the 
numerical results show that the Q-factors range from 0.001 to 0.05, which 
shows good agreement with that inferred from real seismic data. The 
new model predicts the velocity of longitudinal waves varies between 
± 1% to ± 5 % relative to the Voight average velocity, while the velocity 
of transverse waves varies from ± 10% to ± 20%, which gives promising 
explanation to the abnormally slow transverse velocity observed in 
practical measurements. The numerical results support the conjecture 
that the Earth’s uppermost inner core is a solid polycrystalline medium. 
The comprehensive numerical examples show the new model is capable 
of capturing the most important scattering features of both ultrasonic 
and seismic waves with satisfactory accuracy. This work provides a 
universal, quantitative model for characterization of a large variety 
of polycrystalline materials. It also can be extended to incorporate 
more complicated microstructures, including ellipsoidal grains with 
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or without textures, and even multi-phase polycrystalline 
materials. The new model demonstrates great potential of 
applications in ultrasonic nondestructive evaluation and 
inspection of aerospace and aeronautic structures. It also 
provides a theoretical framework for quantitative seismic 
data explanation and inversion for the material composition 
and structural formations of the Earth’s inner core.

Key Words: Multiple Scattering, Polycrystalline, Anisotropy, 
Alloys.

Introduction
Polycrystalline materials constitute a class of most 

important heterogeneous materials that both widely exist 
in nature and extensively used in industry. The majority 
of metallic minerals on the Earth exist in the form of 
polycrystalline compounds. In modern electronic industry, 
sintered and poled ceramic like Lead Zirconate Titanate (PZT) 
is an important type of piezoelectric polycrystalline materials, 
which has found broad applications in manufacturing smart 
materials and structures. Due to the outstanding mechanical, 
thermal and chemical properties, polycrystalline high-
temperature alloys have become the key material in modern 
aeronautics and aerospace industries for manufacturing high 
performance gas turbine engine of commercial and military 
aircrafts [1-3]. As the performance of modern jet fighters and 
commercial aircraft continues improving, the requirements 
for the jet engine become more and more demanding. For 
instance, the supersonic stealth fighter F-22 reaches a 
cruising speed up to Mach 2.25, which requires the thrust-
to-weight ratio of the turbine jet engine exceed 10. To meet 
these stringent requirements, the turbine engine must be 
capable of working in high-temperature and high-pressure 
environment for a long time. For example, the working 
temperature of the turbine engine F119 manufactured 
by Pratt & Whitney company can now achieve 600 °C, 
meanwhile, its service life still can be maintained for more 
than 10000 hrs. The key point to achieve these technological 
requirements lies in the development of reliable high-
temperature materials. Up to now, jet engine manufactures 
have developed a large quantity of high-temperature alloys 
and superalloys, most of which are titanium-based or nickel-
based, such as Ti64 (Ti-6Al-4V), Ti6242 (Ti-6Al-2Sn-4Zr-
2Mo), and most recently, the nonburning titanium alloy 
named alloy-C (Ti-35V-15Cr-0.05C). Metallurgical studies 
reveal that the most important mechanical and thermal 
properties like high strength, outstanding fatigue resistance, 
and extraordinary resistance to high temperature and high 
pressure are all closely related to the microstructures, 
including the grain size, grain shape, preferred orientations 
of the grain crystallographic axes (textures), and their 
phase composition [1,2,4]. In-situ monitoring the formation 
of microstructures during processing helps engineers 
get a better understanding of the formation mechanism 
and evolution of microstructures, which is of significant 
importance for further improving the processing procedure, 
adjusting the operating parameters to ensure that the 
desired microstructures are achieved. Therefore, studying 
advanced technologies for the nondestructive evaluation 
and characterization of key materials is of vital importance 

for the development of modern jet engines. Moreover, 
nondestructive characterization of microstructures also 
plays a critical role in jet engine maintenance. Currently 
the integrally bladed disks (IBDs), in which the blades and 
the compressor disk are manufactured into a single-piece 
construction, are widely used in the fan and compressor 
sections of state-of-the-art military turbine engines due 
to their desirable features such as fewer number of parts 
and outstanding resistance to fatigue cracks. Despite their 
exceptional performance, they also have several drawbacks, 
such as large size, complex structures, and extremely 
expensive manufacturing cost. More importantly, they are 
frequently subjected to foreign object damages. Different 
repair procedures like additive processing for minor 
damage and welding of patches for significant damage are 
often used to renovate the damaged IBDs. In order to restore 
the original microstructures and minimize the mechanical 
property mismatch with the original parts, postprocessing 
heat treatment is usually adopted. Consequently, there is 
a keen need to develop nondestructive inspection (NDI) 
technologies to assess the integrity and microstructure state 
of repaired IBD airfoils. Modern detection technologies, 
like Electron Backscatter Diffraction (EBSD) [5], Atomic 
Force Microscopy (AFM) [6] etc. all have been applied to 
the characterization of microstructures and textures in 
titanium alloys. However, these characterization modalities 
often require careful surface preparation and sophisticated 
measurement equipment. Moreover, these two modalities 
can only detect the near-surface microstructures. Compared 
to other characterization approaches, ultrasonic technology 
possesses a number of unique advantages. For instance, 
ultrasonic NDE provides an economic, nondestructive, 
and easy-to-operate approach, in which only piezoelectric 
transducers, and conventional signal generation and 
processing systems are used. A more attracting capability 
is that ultrasonic waves can insonify a significant depth (up 
to tens of centimeters) into the sample. This unique feature 
enables the possibility of imaging defects and characterizing 
microstructures deep in the tested structures. Consequently, 
extensive research efforts have been devoted to developing 
ultrasonic nondestructive characterization and inspection 
techniques [7-23]. 

Scattering of seismic waves constitutes another research 
subject of this work. Seismic observations reveal that both 
longitudinal and transverse waves can propagate in the 
inner core, which provide strong evidence that the Earth’s 
inner core is composed of solid materials. Under the action 
of gravitation, the pressure at the Earth’s inner core achieves 
up to 330-360 GPa, and the temperature raises up to 5700 K, 
considering the fact that the core has very high density and 
the iron is one of the major component element of the Earth, 
most researchers believe the inner core is mainly composed 
of iron alloys. The seismic waves scattered from the upper 
300 km of the inner core exhibit strong attenuation and 
isotropic scattering characteristics, thus the uppermost 
inner core is considered to be composed of untextured 
polycrystals. The inner part of the inner core shows obvious 
anisotropic scattering behavior, so it is generally modeled 
as textured polycrystals. Calvet and Margerin [24] proposed 
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a duplex microstructure model for the uppermost inner 
core. In this model, the upper 300km of the inner core is 
assumed to be composed of randomly oriented patches 
of crystallite clusters, where the crystallites in the same 
cluster share similar crystallographic orientations. As a 
primary approximation, each patch is regarded as a single 
macro grain. On the basis of this model, they calculated the 
velocity and Q-factors of seismic waves and concluded that 
the polycrystalline model shows great potential to explain 
observed seismic wave velocity and attenuation.

Polycrystalline alloys are composed of large quantities of 
single-crystal elements – grains, also called crystallites. Each 
type of single crystals belongs to a specific class of crystal 
symmetry, so it always exhibits anisotropic elastic behavior. 
Each grain in a polycrystalline material possesses a unique 
crystallographic orientation and thus, the polycrystal 
contains a large number of grain boundaries. The mismatch of 
acoustic impedance at the grain boundaries causes multiple 
scattering of ultrasonic waves during its propagation. As 
a consequence, the amplitudes of ultrasonic signals are 
attenuated and the velocity is frequency-dependent. As 
the ultrasonic pulse propagating in the material, portion 
of the scattered energy propagates backward and induces 
observable grain noises. The transmitted signals and 
backscattered noises both contain rich information about 
the microstructures of the sample. The technical significance 
of ultrasonic scattering in polycrystalline materials has been 
noticed even since the late fifties of the last century. Bhatia 
[25,26] calculated the intensity attenuation coefficients 
for dilatational and shear waves based on the weak-
property fluctuation assumption and the low frequency 
approximation. Since then, significant research efforts 
have been devoted to exploring the possibility of utilizing 
ultrasonic technology to characterizing microstructures 
in polycrystalline materials. In 1979, Ranganathan and 
Dattagupta [27] proposed a scattering model for ultrasound 
attenuation in polycrystalline materials based on the 
weak fluctuation assumption and the Chernov theory. The 
first multiple scattering theory for elastic waves was 
developed by Karal and Keller [28] in 1964. With the small 
perturbation assumption, the differential wave operator 
and its inverse operator are expanded into an infinite series 
of the small parameter which represents the property 
fluctuation. Successive iteration of the series expansion 
into the elastodynamic equations yields a system of integral 
equations. The infinite series is truncated and the terms 
containing up to the second order statistics of the random 
material properties are retained, which finally leads to the 
Christoffel equation for the coherent waves. The complex 
wavenumber for coherent waves are obtained. The method 
developed in this work is called the Keller approximation. 
Based on this pioneering work, Stanke and Kino [29,30] 
developed the corresponding multiple scattering model 
for polycrystalline materials with cubic crystallites. The 
dispersion and attenuation curves for cubic polycrystals 
like aluminum and iron are obtained. Comparison with 
experimental data reveals the model is capable of predicting 
the average grain size with a relative error less than 20%. 
This model is named the unified scattering model since 

it gives a unified theoretical framework for predicting 
the propagation behavior in the whole frequency range, 
covering the Raleigh regime, the stochastic regime and the 
geometric optic regime. It is worth mentioning that only 
one propagation mode was found in the whole frequency 
range. This model has been generalized to characterize 
polycrystals with more complicated microstructures. 
Amhed and Thompson [31-38] investigated the effects of 
texture and grain elongation on the scattering attenuation 
using Stanke-Kino’s model. During 1982 to 1988, Hirsekorn 
[39-42] conducted comprehensive study on the multiple 
scattering of elastic waves in various polycrystalline 
materials, including untextured and textured polycrystals, 
and multiphase polycrystals. A distinct feature in her theory 
is that the series expansion is performed on the displacement 
potentials instead on the displacements. In 1990, Weaver 
[43] developed a multiple scattering model for the mean and 
mean square response of untextured polycrystals with cubic 
crystallites in the framework of Dyson’s equation and Bethe-
Salpeter equation, respectively. The first-order-smoothing 
approximation (FOSA) and the ladder approximation 
are adopted to obtain the explicit expression of the mass 
operator and the intensity operator, respectively. Closed 
form expressions for the attenuation coefficients are 
obtained by further introducing the Born approximation. 
As pointed out in [43], the small perturbation expansion of 
the wave operator is introduced and the theory is limited to 
polycrystals with weak grain anisotropy. In parallel to the 
development of other scattering theories, this model has 
also been extended to incorporate polycrystals with more 
complicated microstructures. Turner extended Weaver’s 
model to the case of textured polycrystals [44]. Kube and 
Turner [45] further derived the attenuation coefficients 
under the Born approximation for materials with general 
anisotropic crystallites. The corresponding scattering 
theory for locally isotropic media is developed by Turner 
and Anugonda [46]. The analytical expression of the original 
dispersion equation is extremely complicated, moreover, 
solving for its numerical solution is even more challenging, 
so all the numerical results in the abovementioned works 
are obtained with the Born approximation, which are valid 
in the frequency regime lower than the geometric region. 
The accurate solution of the dispersion and attenuation 
calculated directly from the FOSA Dyson’s equation remains 
open. In order to investigate the dispersion and attenuation 
behavior in the whole frequency range, Calvet and Margerin 
[47] introduced the so-called spectral function method, in 
which the imaginary part of the ensemble-averaged Green’s 
function is defined as the spectral function and the velocity 
and attenuation are extracted from this function via least 
square approach. This method circumvents the challenging 
problem of solving the complicated dispersion equations. 
They first discovered that there is one propagation mode 
at relatively low frequencies and two modes exist at high 
frequencies, though in the end of the paper they questioned 
this discovery. Later on, they studied the effects of grain 
elongation using the same approach [48]. Calvet and 
Margerin first applied Weaver’s model to study the seismic 
wave attenuation occurred at the Earth’s uppermost inner 
core [24]. One common feature of Weaver’s model and 
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Stanke-Kino’s model is that both of them use the Voigt 
average medium as the homogeneous reference material. 
It is well-known the Voigt average elastic stiffness gives 
the upper bounds of the homogenized media, so it always 
overestimates the quasi-static limits of the coherent waves. 
To remedy this discrepancy, Kube and Turner introduced 
a self-consistent scheme to calculate the quasi-static limits 
of the coherent wave velocities, and proposed to use these 
material properties as the homogeneous reference in 
Weaver’s model [49].

Through the above discussion we see most of current 
ultrasonic scattering models are based on the weak 
scattering assumption, which is valid when the grain 
anisotropy or texture anisotropy is relatively weak. In this 
work, the author strives to develop a universal multiple 
scattering theory for polycrystalline materials with general 
anisotropic crystallites, regardless of whether the grains are 
weakly anisotropic. Following the new paradigm created in 
the previous work [50], the renormalized Dyson’s equation 
for polycrystalline materials are derived in Section II, by 
using the Fourier transform technique, the closed form 
solution of the coherent wave field in spacetime is obtained. 
Meanwhile the dispersion equation for the longitudinal and 
transverse coherent waves are derived. The dispersion and 
attenuation of polycrystals with different degrees of grain 
anisotropy are presented in Section III. The accuracy of the 
new model is validated through comprehensive comparison 
with Stanke-Kino’s model, the experimental data, and 
numerical simulations. To show its practical applications in 
ultrasonic nondestructive characterization, the dispersion 
and attenuation of pure titanium and Titanium alloys are 
analyzed in Section IV. Particular attentions are paid to the 
effects of grain size, phase change, and variations in alloying 
elements on the propagation parameters. As an example 
of practical application in seismology, the dispersion and 
Q-factors of hexagonal and cubic iron models of the Earth’s 
inner core are also calculated and possible explanations to 
a series of longstanding problems concerning the observed 
velocity and attenuation of seismic waves from inner core 
are discussed. Section V gives a detailed discussion on how 
to conduct more accurate numerical and experimental 
validation of the new model. We also discussed several 
important extensions of the current model to incorporate 
more complicated microstructures that are of practical 
importance.  The unique features of the new model and the 
major conclusions are highlighted in Section VI.       

Theoretical Fundamentals
In this section, we present the theoretical fundamentals 

of the new multiple scattering theory for polycrystalline 
materials. The development of the new theory consists of the 
following major steps: 1) Starting from the elastodynamic 
equations, the displacement and strain Green’s functions of 
the inhomogeneous medium are expressed in terms of the 
homogeneous reference Green’s function and the material 
property fluctuation; 2) Eliminate the singularity of the 
Green’s tensor appeared in the strain Green’s function, and 
then obtain a set of renormalized integral equation; 3) Derive 
the renormalized Dyson’s equation by applying Feynman’s 

diagram and first-order-smoothing approximation; 4) Solve 
the system of integral equations using Fourier transform 
technique, and obtain the dispersion equations. To keep this 
work in a self-contained manner, and stress the peculiar 
points that applied for polycrystals specifically, the major 
steps are detailed as follows. 

The time-harmonic wave propagation in a polycrystalline 
medium is governed by the classic elastodynamic equation [51]:

2
, ,[ ( ) ] ( ) 0,ρ ω+ =ijkl k l j ic u ux x 			               (1)

where ω is the circular frequency, ui denotes the 
displacement components, ρ(x) and cijkl(x) are the mass 
density and elastic stiffness. The elastic stiffness has the 
following symmetries:

( ) ( ) ( ) ( ).ijkl jikl ijlk klijc c c c= = =x x x x 		              (2)

Throughout this work the Cartesian tensor is used. A bold-
faced letter represents a vector, tensor or matrix, and italic 
letters with subscript indices represent tensor components 
or matrix elements. A comma followed by a coordinate 
index means taking partial derivative with respect to the 
corresponding spatial coordinate. The Einstein summation 
convention, i.e., a repeated index implies summation over 
that index from 1 to 3, is assumed in this work.

As the first step in the development of the new theory, we 
consider an infinite homogeneous elastic medium embedded 
with a single crystallite, for which the crystallographic 
axes are oriented arbitrarily, as shown in figure 1(a). 
The quantities pertaining to the homogeneous reference 
medium and those to the crystallite are discriminated by an 
attached index “(0)” or “(1)”, respectively. In crystallography 
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Figure 1: Definition of the single-inclusion Green’s function (a) and the 
homogeneous Green’s function (b).
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the orientation of a single crystal relative to a reference, global coordinate system is usually described by the Euler angles. 
The Euler angles are also frequently adopted to describe the orientation distribution functions of textured polycrystals. 
Considering its important applications in this work and a series of following researches, the definition of the Euler angles (θ, 
φ, ψ) and related conventions used in this work are rigorously presented in the appendix. 

Green’s function is defined as the resulting field excited by a time-harmonic unit concentrated force F applied at a generic 
point Oʹ along eaʹ, where eaʹ represents the coordinate basis of a source-region coordinated system with its origin located 
at Oʹ. The coordinate basis of the coordinate system Oʹxʹyʹzʹ by no means needs to be the same as those of the coordinate 
system Oxyz, so at this point we assume they are different from each other. The fields in the substrate and in the crystallite 
are governed by two sets of different equations, which are given by:

(0) (0) 2
, ( ) 0,ijkl ka lj ia iac G G Faρ ω δ′ ′ ′ ′+ + − =x x in V0,								                           (3)

(1) (1) 2
, ( ) 0,ijkl ka lj ia iac G G Faρ ω δ′ ′ ′ ′+ + − =x x  in V1,									                            (4)

where V0 and V1 represent the volumes occupied by the reference medium and the crystallite, respectively, and aiaʹ 
denotes the directional cosine of eaʹ, i.e., cos( , )ia a ia ′ ′= e e .

Suppose the crystallite and the substrate are perfectly bounded, so the stress and displacement are continuous across the 
boundary of the crystallite, thus we have

(0) (1)
, ,( ) ( ) ,ijkl ka l j ijkl ka l jc G S N c G S N+ −
′ ′→ = →x x

( ) ( ),ka kaG S G S+ −
′ ′→ = →x x on S.											              (5)

It is shown in [50] that Green’s function kaG ′  can be expressed in terms of the Green function of a homogeneous medium 
0 ( , )aGβ′′ ′ ′′ ′x x , as shown in figure 1(b).  Following the standard procedure as comprehensively presented in [50], we obtain 

the integral representation of the perturbed field, i.e., the displacement and strain Green’s functions of the polycrystalline 
material composed of an infinite number of randomly oriented crystallites, as follows:
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where 0 ( , )iGβ′′ ′′ ′′x x , 0 ( , )iα βε ′′ ′′ ′′ ′′x x , 0 ( , )i jEα β′′ ′′ ′′ ′′ ′′x x are Green’s function of the homogeneous reference medium and its derivatives.

For the convenience of subsequent discussion, we rewrite Eq. (6) in a more compact form:
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21 13 31 12 22 23 32 22 23 33 33 32 22 33 33 22 23 23 21 33 23 13 31 32 33 12 21 23 22 13 31 22 32 12

0 0 0 0 0 0 0 0 0
11 31 31 11 12 32 32 12 13 33 33 13 12 33 32 31 13 23

2, , , , , , , , , , , , , , , , ,

, , , , , , , , ,

G G G G G G G G G G G G G G G G G

G G G G G G G G G

+ + + + + + + + + + +

+ + + + + + 0 0 0 0 0 0 0 0
33 21 11 33 33 11 13 13 12 13 11 23 32 11 31 21

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 12 21 11 22 21 12 22 23 31 13 32 12 32 22 31 13 22 23 21 21 31 11 32 23 11 13 12 11 22 22 11 12 12

2

2
, , , , , , , ,

, , , , , , , , , , , , , , , , ,

G G G G G G G G

G G G G G G G G G G G G G G G G G








+ + + + +

+ + + + + + + + + + +

.








 
 
 
 

		  (12)

It is noted the propagator Γ is a symmetric matrix, i.e., ΓT= Γ. The fluctuation of the mass density δρ and that of the elastic 
stiffness δcij appeared in Π(x) describe the deviation of the properties of the specific crystallite from those of a homogeneous 
reference medium, both of which are treated as random variables here. In particular, the elastic stiffness fluctuation δcij is 
also a function of the crystallographic orientation of the specific crystallite, see Appendix A.

As rigorously analyzed in [50], the integral in the second term on the righthand side of Eq. (7) has δ singularities due to 
the second order derivative of the homogeneous Green’s function. By introducing the concept of shape-dependent principal 
value [50], the correct definition of the matrix D is given by:

D : . .D ( )P S δ ′′= − −S x x ,											           (13)

where P.S. D denotes the shape-dependent principal value of the Green tensor, S  is the singularity of the Green tensor, 
which is also dependent on the statistic characteristics of the inhomogeneities. For polycrystals, the expression of the 
singularity tensor S  strongly depends on the geometry of microstructures, such as the grain shape (equiaxed, elongated, or 
triaxial ellipsoidal) and textures. Generally speaking, there is no closed form expression for the singularity. However, for the 
simplest case, i.e., equiaxed grains without preferred crystallographic orientation, the material is macroscopically isotropic, 
and the singularity tensor has the following explicit expression, 

1111 1221 1221

1221 1111 1221

1221 1221 1111

2233

2233

2233

0 0 0
0 0 0
0 0 0

,
0 0 0 4 0 0
0 0 0 0 4 0
0 0 0 0 0 4

S S S
S S S
S S S

S
S

S

 
 
 
 

=  
 
 
 
  

S 									        (14)

where

1111
2 7 ,

15 ( 2 )
S λ µ

µ λ µ
+

=
+  

1221 ,
15 ( 2 )

S λ µ
µ λ µ

+
= −

+  1111 1221 22332S S S= + 								        (15)

where λ and μ are Lame’s constants of the homogeneous reference medium.

From Eq. (15) we can see that 1111 1221 22332S S S= + , thus Sijkl is an isotropic tensor. This conclusion is consistent with the 
assumption that the polycrystalline medium is macroscopically isotropic. In analogous to the isotropic elastic stiffness 
tensor, we can rewrite Sijkl as 

 1 2 ( ),ij i j j i ijS S Sα β α β α β αβδ δ δ δ δ δ= + + 										          (16)

Where, 
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1 ,
15( 2 )

S λ µ
λ µ µ
+

= −
+

 2
3 8

30( 2 )
S λ µ

λ µ µ
+

=
+

.		           (17)

Although the dimension of the singularity tensor is the 

same as that of the elastic compliance tensor, they are 

completely different quantities. One can easily verify that 
the expressions of these two quantities are different.

Correspondingly, P.S. D has the following form:

0 0 0 0 0 0
1111 1221 1331 1231 1131 1211
0 0 0 0 0 0
2112 2222 2332 2232 2132 2212
0 0 0 0 0 0
3113 3223 3333 3233 3133 3213

0 0 0 0 0
2113 2223 2333 2233 2133

. . . . . . 2 2 2

. . . . . . 2 2 2

. . . . . . 2 2 2
. .

2 2 2 . .4 4 4

P S E P S E P S E E E E
P S E P S E P S E E E E
P S E P S E P S E E E E

P S
E E E P S E E E

=D 0
2123

0 0 0 0 0 0
1131 1232 1333 1233 1133 1213
0 0 0 0 0 0
1112 2221 2331 1232 2131 1122

,

2 2 2 4 . .4 4
2 2 2 4 4 . .4

E E E E P S E E
E E E E E P S E

 
 
 
 
 
 
 
 
  

(18)

Finally, we obtain the correct definition of the matrix 
(x x)′′Γ −  by introducing its shape-dependent principal value
. . (x x)P S ′′Γ − , i.e., 

(x x) : . . (x x) (x x),P S Sδ′′ ′′ ′′Γ − = Γ − − −                (19)

where
A B

. . ( ) ,
B . .DTP S

P S
 ′′Γ − =  
 

x x  
0 0

S .
0 S
 

=  
 

            (20)

Substitution of (19) into (7) yields:

0 3

( )
(x x ) (x x ) [ . . (x x ) S (x x )] (x) (x x ) x.

V
P S dδ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′ ′Ψ − = Ψ − + Γ − − − Ψ −∏∫∫∫ x

(21)

Invoking the definition of the Dirac-δ function, we get

0 3

( )
(x x ) (x x ) . . (x x ) ( ) (x x ) x S (x ) (x x ).

V
P S d′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′ ′′ ′Ψ − = Ψ − + Γ − Ψ − − Ψ −∏ ∏∫∫∫ x

x (22)

Introducing the renormalized field variable defined by

(x x ) (x x ) S (x ) (x x ),′′ ′ ′′ ′ ′′ ′′ ′Φ − = Ψ − + Ψ −∏               (23)

the integral equation (22) is rewritten as:
0 3

( )
(x x ) (x x ) . . (x x ) ( ) (x x ) x,

V
P S d′′ ′ ′′ ′ ′′ ′ ′′ ′Φ − = Ψ − + Γ − Ξ Φ −∫∫∫ x

x  (24)

where
1(x) (x)[ S (x)] .−Ξ = Ι + Π∏ 	                                                                                       (25)

Equation (24) is the renormalized integral equation 
for the renormalized field Φ(x”-x’). In this work, we 
consider polycrystalline materials with general anisotropic 
crystallites, correspondingly, the matrix Ξ(x) is given by:

2

2

2

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0

(x) 0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

δρω
δρω

δρω

 
 
 
 
 

Ξ Ξ Ξ Ξ Ξ Ξ 
 Ξ = Ξ Ξ Ξ Ξ Ξ Ξ
 

Ξ Ξ Ξ Ξ Ξ Ξ 
 Ξ Ξ Ξ Ξ Ξ Ξ 
 Ξ Ξ Ξ Ξ Ξ Ξ
 

Ξ Ξ Ξ Ξ Ξ Ξ 

. 	           (26)

Similar to the elastic stiffness fluctuation δcij, the 
renormalized elastic variable pqΞ is also dependent on the 
orientation of each grain, i.e., it is a function of the Euler 
angles. The governing equation for the resemble average 
of the stochastic variable, i.e., the coherent response of the 
scattered field, can be obtained using the Feynman diagram 
technique, for which the general procedure is presented 
in the author’s previous work [50]. If further invoking the 
first-order-smoothing approximation [43,50,52,53], then we 
obtain Dyson’s equation: 

0 3

( ) ( )
(x x ) (x x ) . . (x x ) . . (y x) (y) (x) (x x ) xΦ Ψ Γ Γ Ξ Ξ Φ′′ ′ ′′ ′ ′′ ′ ′〈 − 〉 = − + − − 〈 〉〈 − 〉∫∫∫ ∫∫∫af af ab cd bc de efV V

P S P S d
y x (27)

For a statistically homogeneous medium, the two-point 
correlation function is given by: 

(y) (x) (y x)Ξ Ξ Ξ Ξ〈 〉 = 〈 〉 −ab cd ab cd P ,		            (28)

where the ensemble-average of the covariance of the 
renormalized elastic quantity ( ) ( )Ξ Ξ〈 〉ab cdy x  are separated 
into orientation dependent part Ξ Ξ〈 〉ab cd  and the spatial 
dependent part ( )P −y x . This conclusion is hold when the 
random medium is statistically homogeneous and the 
ergodic assumption is satisfied. The ensemble average of 
Ξ Ξ〈 〉ab cd  is taken on the entire SO(3) group. The invariant 

integral measure (Haar measure) on SO(3) group 
can be calculated from the biinvariant metric and the 
corresponding left-invariant volumetric 3-form. If the SO(3) 
group is parameterized by the Euler angles, the normalized 
volumetric element/measure is 2 1(8 ) sin d d dπ θ ϕ θ ψ− ∧ ∧  [44, 
55], thus Ξ Ξ〈 〉ab cd  has the following expression [54]:

2 2

2 0 0 0

1( , , ) ( , , ) ( , , ) ( , , ) sin
8ab cd ab cdd d d

π π π
ϕ θ ψ ϕ θ ψ ϕ θ ψ ϕ θ ψ ϕ θ ψ θ

π
〈Ξ Ξ 〉 = Ξ Ξ∫ ∫ ∫  (29)

( )P −y x  is called spatial autocorrelation function (SAF). 
The SAF of polycrystalline materials are extensively studied 
by Stanke [30]. It is shown the exponential functions can best 
fit the experimentally measured SAF. Consequently, in this 
work, we use the exponential correlation function to describe 
the statistical characteristics of polycrystals. Furthermore, 
we consider polycrystalline materials with equiaxed grains, 
thus the bulk material is macroscopically isotropic, and 
the exponential correlation function is dependent on the 
magnitude of the distance of two points only:

y x

(y x) ,aP e
−

−
− =                                                                                               (30)

where a is the correlation length. It is generally considered 
as the average radius of the grains.

The Fourier transform of SAF represents the power 
spectrum of the medium fluctuation, which is given by:

3

2 2 2
8( )

(1 )
aP

k a
π

=
+

k ,                                                                                           (31)

where k is the magnitude of the wavenumber.

As pointed out in [50], we can always choose the 
properties of the reference medium such that the first 
order moment vanishes. This choice also ensures the 
fastest convergence rate of the multiple-scattering series. 
According to the ergodic assumption, the ensemble average 
is equivalent to the volumetric average. For the case of 
untextured polycrystals, the volumetric average is further 
equal to the average over the whole space of possible 
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crystallographic orientations, thus we get:

(x) 0ab〈Ξ 〉 = ,						                                                                                                        (32)

and
2 2

2 0 0 0

1 ( , , ) sin .
8ab abd d d

π π π
ϕ θ ψ ϕ θ ψ θ

π
< Ξ >= Ξ∫ ∫ ∫ 							                                                              (33)

Eq. (33) gives 36 equations for the unknow elastic properties of the reference medium. Due to the isotropy of the reference 
medium, it has only two independent parameters, i.e., the Lame constants. It is shown numerically that only two of the 36 
equations are independent, which exactly form a system of well-defined equations.  The Lame constants can be obtained by 
solving any two independent equations of the 36 equations, here we use:

11 0〈Ξ 〉 = : 
2 2

112 0 0 0

1 ( , , )sin 0
8

d d d
π π π
ϕ θ ψ ϕ θ ψ θ

π
Ξ =∫ ∫ ∫ ,							                           (34)

44 0〈Ξ 〉 = : 
2 2

442 0 0 0

1 ( , , ) sin 0
8

d d d
π π π
ϕ θ ψ ϕ θ ψ θ

π
Ξ =∫ ∫ ∫ .								                             (35)

In this work, we only consider single phase polycrystals, so the density is a constant. But we need to mention that the 
general theoretical framework is suitable for multiphase polycrystals for which both the density and elastic stiffness are 
random variables. The elastic stiffness constants of the homogeneous reference material obtained by solving Eqs. (34) and 
(35) are largely different from the Voigt-averaged values. In Sections III and IV we will see that the Voigt average scheme 
gives the upper bound of the quasi-static limit of the coherent wave velocities. This conclusion is in agreement with that 
given by other works [30,49].

Eq. (27) is a system of integral equations of convolution type, it is most conveniently solved by the Fourier transformation 
technique. In this work, we use the following Fourier transform pair:

3 3
3( ) ( )

1(k) (x) x, (x) (k) k
8

Ψ Ψ Ψ
π

− ⋅ ⋅= Ψ =∫∫∫ ∫∫∫ 

i i

V V
e d e dk x k x

x k
						                                      (36)

Applying Fourier transform to the renormalized Dyson’s equation (27), and considering (30) and (31), we get:

0 3
3 ( )

1(k) (k) . . (k) . . (s) (k s) s (k) ,
8

Ψ Γ Ξ Ξ Γ Φ
π

 〈Φ 〉 = + 〈 〉 − 〈 〉  ∫∫∫    

af af ab bc de cd efV
P S P S P d

s
						      (37)

Multiplying both sides of Eq. (37) by 
1

. . (k)Γ
−

  


gaP S , we get:

1 1 0 3
3 ( )

1. . (k) (k) . . (k) (k) . . (s) (k s) s (k) ,
8

Γ Φ Γ Ψ Ξ Ξ Γ Π Φ
π

− −     〈 〉 = + 〈 〉 − 〈 〉      ∫∫∫     

ga af ga af gc de cd efV
P S P S P S d

s
		  (38)

Rearranging this equation, we have:

1 13 0
3 ( )

1. . (k) . . (s) (k s) s (k) . . (k) (k),
8

Γ Ξ Ξ Γ Φ Γ Ψ
π

− −     − 〈 〉 − 〈 〉 =       ∫∫∫     

ge gc de cd ef ga afV
P S P S P d P S

s
			   (39)

The ensemble averaged response in the frequency-wavenumber domain can be solved by:
1

1 13 0
3 ( )

1(k) . . (k) . . ( ) (k s) s . . (k) (k),
8

Φ Γ Ξ Ξ Γ Γ Ψ
π

−
− −     〈 〉 = − 〈 〉 −       ∫∫∫     

hf hg hc dg cd ga afV
P S P S P d P S

s
s   				    (40)

Simultaneously we obtain the dispersion equation:
1 3

3 ( )

1det . . (k) . . (s) (k s) s 0
8

Γ Ξ Ξ Γ
π

−    − 〈 〉 − =      ∫∫∫  

ge gc de cdV
P S P S P d

s
 							       (41)

The solution in the frequency domain is given by:
1

1 13 0 ( ) 3
3 3( ) ( )

1 1(x,x , ) . . (k) . . (s) (k s) s . . (k) (k) k
8 8

Φ ω Γ Ξ Ξ Γ Γ Ψ
π π

−
− − ′⋅ −  ′    〈 〉 = − 〈 〉 −       ∫∫∫ ∫∫∫    

i
hf hg hc dg cd ga afV V

P S P S P d P S e dk x x

k s
 ,			   (42)

If the source is a time varying signal F(t), its spectrum can be obtained by the following time domain Fourier transform 
pair:

( ) ( ) ωω
+∞

−∞
= ∫

i tF F t e dt  , 1( ) ( )
2

ωω ω
π

+∞ −

−∞
= ∫ 

i tF t F e d 					                                                                           (43)
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and the complete wavefield in spacetime is given by: 

1
1 13 0 ( ) 3

3 3( ) ( )

(x,x , )

1 1 1( ) . . (k) . . (s) (k s) s . . (k) (k) k ,
2 8 8

ω

Φ

ω Γ Ξ Ξ Γ Γ Ψ ω
π π π

−
+∞ − − ′⋅ − −

−∞

′〈 〉 =

       − 〈 〉 −         
∫ ∫∫∫ ∫∫∫     

hf

i i t
hg hc dg cd ga afV V

t

F P S P S P d P S e d e dk x x

k s

 		  (44)

Eq. (44) gives an explicit expression for the mean wavefield induced by a general point source. It has significant 
implications for applications in ultrasonic nondestructive evaluation technologies. For instance, it can be used to develop 
grain noise models when integrated with transducer transfer functions. In this work, we only focus on the dispersion and 
attenuation behavior of a plane wave component. In a statistically isotropic medium, the dispersion behavior of a plane 
wave is independent of its propagation direction. Without loss of generality, we consider a plane wave propagating along the 
x3 axis, the wave vector [0,0, ]k=k , the coefficient matrix and the dispersion equations of longitudinal and transverse waves 
can be expressed explicitly as follows: 

11 18

22 27

33 34 35 36

34 44 45 46
1 3

35 45 55 563 ( )

36 46 56 66

27 77

18 88

99

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1. . (k) . . (s) (k s) s 0 0 0 0 0
8

0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Γ Ξ Ξ Γ
π

−





   − 〈 〉 − =    



∫∫∫  

ge gc de cdV

M M
M M

M M M M
M M M M

P S P S P d M M M M
M M M M

M M
M M

M

s





 
 
 
 
 
 
 
 
 
 



 ,			   (45)

The non-vanishing elements of the matrix M are given by:
2 2 2

11 44( ) ,TM k k K kµ= − −  2 2 2
33 11( 2 )( ) ,LM k k K kλ µ= + − −  34 12 ,M K ik= −   36 11 ,M K ik= −  18 44 ,M K ik= − 	               (46a)

2 2 2 2 2 2
44 11 11 12 44 11 12 45 11 13 12 13 46 13 66 14 15 77 16 99[ ] 2 2[ ] [ ] ,M K= − < Ξ > + < Ξ > Σ − < Ξ Ξ > Σ − < Ξ Ξ > + < Ξ Ξ > Σ − < Ξ > Σ − < Ξ > + < Ξ > Σ − < Ξ > Σ 	               (46b)

2
45 12 11 12 12 22 44 12 11 22 45 12 13 13 22 11 23 12 23 46

13 23 66 14 24 15 25 77 16 26 99

[ ] [ ] [ ]
[ ] ,

M K= − < Ξ Ξ > + < Ξ Ξ > Σ − < Ξ > + < Ξ Ξ > Σ − < Ξ Ξ > + < Ξ Ξ > + < Ξ Ξ > + < Ξ Ξ > Σ
− < Ξ Ξ > Σ − < Ξ Ξ > + < Ξ Ξ > Σ − < Ξ Ξ > Σ

		                (46c)

2
46 12 11 13 12 23 44 12 13 11 23 45 13 13 23 11 33 12 33 46

13 33 66 14 34 15 35 77 16 36 99

[ ] [ ] [ ]
[ ] ,

M K= − < Ξ Ξ > + < Ξ Ξ > Σ − < Ξ Ξ > + < Ξ Ξ > Σ − < Ξ > + < Ξ Ξ > + < Ξ Ξ > + < Ξ Ξ > Σ
− < Ξ Ξ > Σ − < Ξ Ξ > + < Ξ Ξ > Σ − < Ξ Ξ > Σ

		                 (46d)

2 2 2 2 2 2
55 11 12 22 44 12 22 45 12 23 22 23 46 23 66 24 25 77 26 99[ ] 2 2[ ] [ ] ,M K= − < Ξ > + < Ξ > Σ − < Ξ Ξ > Σ − < Ξ Ξ > + < Ξ Ξ > Σ − < Ξ > Σ − < Ξ > + < Ξ > Σ − < Ξ > Σ 	               (46e)

2
56 12 12 13 22 23 44 13 22 12 23 45 23 13 23 12 33 22 33 46

23 33 66 24 34 25 35 77 26 36 99

[ ] [ ] [ ]
[ ] ,

M K= − < Ξ Ξ > + < Ξ Ξ > Σ − < Ξ Ξ > + < Ξ Ξ > Σ − < Ξ > + < Ξ Ξ > + < Ξ Ξ > + < Ξ Ξ > Σ
− < Ξ Ξ > Σ − < Ξ Ξ > + < Ξ Ξ > Σ − < Ξ Ξ > Σ

	                     (46f)

2 2 2 2 2 2
66 11 13 23 44 13 23 45 13 33 23 33 46 33 66 34 35 77 36 99[ ] 2 2[ ] [ ] ,M K= − < Ξ > + < Ξ > Σ − < Ξ Ξ > Σ − < Ξ Ξ > + < Ξ Ξ > Σ − < Ξ > Σ − < Ξ > + < Ξ > Σ − < Ξ > Σ 	               (46g)

2 2 2 2 2 2
77 44 14 24 44 14 24 45 14 34 24 34 46 34 66 44 45 77 46 99[ ] 2 2[ ] [ ]M K= − < Ξ > + < Ξ > Σ − < Ξ Ξ > Σ − < Ξ Ξ > + < Ξ Ξ > Σ − < Ξ > Σ − < Ξ > + < Ξ > Σ − < Ξ > Σ ,  (46h)

2 2 2 2 2 2
88 44 15 25 44 15 25 45 15 35 25 35 46 35 66 45 55 77 56 99[ ] 2 2[ ] [ ] ,M K= − < Ξ > + < Ξ > Σ − < Ξ Ξ > Σ − < Ξ Ξ > + < Ξ Ξ > Σ − < Ξ > Σ − < Ξ > + < Ξ > Σ − < Ξ > Σ 	                (46i)

2 2 2 2 2 2
99 44 16 26 44 16 26 45 16 36 26 36 46 36 66 46 56 77 66 99[ ] 2 2[ ] [ ] ,M K= − < Ξ > + < Ξ > Σ − < Ξ Ξ > Σ − < Ξ Ξ > + < Ξ Ξ > Σ − < Ξ > Σ − < Ξ > + < Ξ > Σ − < Ξ > Σ   (46j)

22 11M M= , 35 34M M=  , 27 18M M=  ,						                                                                        (46k)

where 

11
3( 6 )( 2 )

3 8
K λ µ λ µ

λ µ
+ +

=
+

, 12
3( )( 2 )

3 8
K λ µ λ µ

λ µ
+ +

=
+

, 44
15( 2 )
2(3 8 )

K λ µ µ
λ µ
+

=
+

, 11 12 442K K K= + .			                                      (47)

2 3
44 1111 1 113 ( )

1(k) (s) (k s) s,
8π

Σ = − −∫∫∫  

V
S s G P d

s
  3
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3
46 1221 1 3 133 ( )

1( ) ( ) ( ) ,
8 V

S s s G P d
π

Σ = − −∫∫∫ s
k s k s s   2 3

66 1111 3 333 ( )

1( ) ( ) ( ) ,
8 V

S s G P d
π

Σ = − −∫∫∫ s
k s k s s  (48b)

2 2 3
77 2233 2 33 3 22 2 3 233 ( )

1( ) 4 [ ( ) ( ) 2 ( )] ( ) ,
8 V

S s G s G s s G P d
π

Σ = − + + −∫∫∫ s
k s s s k s s    (48c)

2 2 3
99 2233 1 22 2 11 1 2 123 ( )

1( ) 4 [ ( ) ( ) 2 ( )] ( ) ,
8 V

S s G s G s s G P d
π

Σ = − + + −∫∫∫ s
k s s s k s s     (48d)

22 11Σ = Σ , 27 18Σ = Σ , 35 34Σ = Σ , 55 44Σ = Σ , 56 46Σ = Σ , 88 77Σ = Σ 	    (48e)

The dispersion equation for longitudinal coherent waves is:
2 2 2

33 44 56 55 46 66 45 45 46 56 44 55 66
2 2 2 2 2 2
34 55 66 56 35 44 66 46 36 44 55 45

34 35 46 56 45 66 34 36 45 56 46 55 35 36 45 46 44 56

( 2 )

( ) ( ) ( )
2 ( ) 2 ( ) 2 ( ) 0,

M M M M M M M M M M M M M

M M M M M M M M M M M M
M M M M M M M M M M M M M M M M M M

+ + − −

+ − + − + −
+ − + − + − =

(49)

The dispersion equation for coherent transverse waves is:

2
11 88 18 0M M M− = ,                                                                                            (50)

The propagation characteristics of the coherent wave, i.e., 
the ensemble average of the perturbed field can be described 
by the complex propagation constant, Re( ) Im( )k k i k= + , 
Re( )k Vω= , Im( )k α= , where ω is the circular frequency, 
V is the coherent wave velocity, and α is the attenuation 
coefficient of the coherent wave. The procedure for the 
calculation of the involved integrals are detailed in [50]. All 
the integrands in the above integrals decays proportionally 
to 1/s2 when s →+∞ . Consequently, all the infinite integrals 
are convergent. The complex wavenumber is obtained by 
searching for the roots of the dispersion equations in the 
complex k-plane. The numerical algorithm is implemented 
on the platform Compaq Visual Fortran 6.6 for which the 
powerful IMSL numerical library is integrated.

We introduce the dimensionless quantities in the 
following discussion. The dimensionless velocity variation, 
attenuations and frequencies of longitudinal and transverse 
coherent waves are defined by:

0

0

,L
L

L

V VV
V

δ −
=   ,L Ldα α=   0 0 ,L LK k d=                                                                   (51)

0

0

,T
T

T

V VV
V

δ −
=  0 0 ,T TK k d=  0 0 ,T TK k d=                                                                      (52)

where d is the average diameter (or characteristic 
dimension) of the heterogeneities, d=2a, V0L and V0T are 
the velocities of the longitudinal and transverse waves 
of the reference material, k0L and k0T are the converted 
wavenumbers calculated using the longitudinal and 
transverse waves of the reference medium, i.e., k0L=ω/ V0L, 
k0T= ω/ V0T. Since d, V0L and V0T are constants, 0LK  and 0TK  
can be viewed as dimensionless frequencies. αL and αT are 
the attenuation coefficients of longitudinal and transverse 
waves.

Validation of the New Model 
To validate the accuracy of the new model, we first 

calculate the velocity and attenuation of several practically 
important polycrystalline alloys, such as aluminum alloy, 
iron alloy, 304 stainless, OFHC copper, and Inconel 600. 
These materials have been widely used in aeronautic 
industry, oil and gas transmission, and pressured vessels 

and pipes in nuclear reactors [55,56]. Consequently, 
nondestructive characterization of these materials 
has drawn much attentions. Stanke [30] calculated the 
dispersion and attenuation of Al and Iron using the unified 
scattering theory. Experimental data for the attenuation of 
longitudinal waves in 304 stainless steel and OFHC copper 
are also measured. Pamel [55,56] conducted comprehensive 
numerical simulations on the propagation and scattering 
of ultrasonic waves in polycrystalline materials. The 
experimental data and numerical simulations provides good 
references to evaluate the accuracy of the new model. 

Table 1 shows the elastic stiffness and the density of the 
materials used for comparison. The materials considered by 
Stanke [30] and Pamel [55,56] all belong to the body-centered 
cubic (BCC) symmetry class. The degree of anisotropy of 
cubic single crystals is described by the following relative 
anisotropy factor: 

11 12 44
0
11

2
,

c c c
c

ε
− −

=  where 0
11 2c λ µ= + . 		            (53)

where λ and μ are the Lame constants of the reference 
medium, as shown in table 2.

From the material parameters we can see the crystallites 
in aluminum alloy have relatively low anisotropy, ε=0.1. 
Crystallites of Iron, OFHC copper and Inconel 600 have 
intermediate degree of anisotropy, ε ≈ 0.5. 304 stainless 
steel has the strongest grain anisotropy, ε ≈ 0.7. The various 
degrees of grain anisotropy indicate these materials are 
good examples to validate the new model. 

Material
Elastic constants 

(GPa) Density (kg/m3) Relative 
anisotropy factor

C11 C12 C44 ρ ε
Aluminum BCC 103.4 57.1 28.6 2700 0.10

Iron BCC 219.2 136.8 109.2 7860 0.51
304 SS BCC 200.5 133.0 125.0 8010 0.70
OFHC 
Copper BCC 168.3 121.1 75.7 8392 0.51

Inconel 600 BCC 234.6 145.4 126.2 8260 0.56

Table 1: Material properties of common metal polycrystals.

The elastic stiffness of the homogeneous reference media 
are calculated by solving the system of nonlinear equations 
(34)-(35). The Voigt average elastic moduli are given by:

11 22 33 12 13 23 44 55 66

11 22 33 12 13 23 44 55 66

1 [ 4( ) 2( )],
15
1 [ 3( )],

15

c c c c c c c c c

c c c c c c c c c

λ

µ

= + + + + + − + +

= + + − − − + + +

                 (54)

As pointed out in the introduction, most of the existing 
scattering theories, including the unified theory developed by 
Stanke and Kino [29] and Weaver’s model [43], use the Voigt 
average material as the homogeneous reference medium. It 
is well known the Voigt average properties are calculated 
based on the equal strain assumption, and thus it always 
overestimates the elastic stiffness of the materials. Contrary 
to the Voigt average, the Reuss average is obtained with the 
equal stress assumption, which gives the lower bound of 
the elastic stiffness. Shtrikman and Hashin [57] developed 
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a self-consistent method to evaluate the effective elastic 
properties of polycrystalline materials. In the scattering 
scenario, the velocities calculated using the predictions of all 
these homogenization schemes give the quasi-static limits 
of the coherent wave velocities. To quantitatively compare 
the difference given by these bounds for various materials, 
table 2 lists the reference properties calculated from the 
new theory and the Voigt average properties, and table 3 
lists the quasi-static limits of phase velocities predicted by 
various models. The acronym SFMS stands for the Strong-
Fluctuation-Multiple-Scattering theory developed in this 
work. Using the predictions given by the SFMS theory as a 
standard, table 2 shows that for Aluminum, the Voigt average 
approach overestimates the longitudinal velocity by 0.07%, 
and overestimate 0.23% for transverse velocity. For strongly 
anisotropic material 304 stainless steel, the relative error for 
longitudinal and transverse velocity goes up to 2.78% and 
7.24%, respectively. The quasi-static limits of longitudinal 
and transverse waves predicted by the SFMS theory and 
the unified theory demonstrate excellent agreement for all 
the materials, the relative differences always lie in 0.08 %, 
which are negligible. The Reuss bound and the Voigt bound 
gives reasonable predictions for polycrystals with weakly 
anisotropic grains, but for materials with strongly anisotropic 
grains the relative error of the estimates becomes large.

The magnitude of the dispersion strongly depends on the 
degree of grain anisotropy, the stronger the anisotropy, the 
larger the dispersion. The attenuation in this range increases 
with frequency in a complicated nonlinear way. The width of 
the intermediate frequency range decreases significantly as 
the degree of grain anisotropy increases; 4) At the end of the 
intermedia range, the dispersion increases dramatically and 
the velocities of the slow and fast mode quickly approach 
their high frequency limits. In the high frequency range, 
the dispersion of both modes become negligible, while the 
dimensionless attenuation of both modes approaches a 
constant near unity. We also note several distinct features 
for longitudinal and transverse waves. For instance, the 
low frequency branch of the longitudinal waves is always 
connected to the branch of the fast mode at high frequencies, 
while the low frequency branch of transverse waves is 
always connected to the branch of the slow-mode. At high 
frequencies, the attenuation of the fast-longitudinal mode is 
always smaller than that of the slow mode. For transverse 
waves the opposite character is observed.

Figures 3 and 4 shows the results obtained by Stanke 
[30] and that given by the SFMS model for aluminum and 
iron, respectively. It is observed that throughout the whole 
frequency range only one propagation mode is obtained by 
the unified model, while the SFMS model gives two at high 
frequencies and show the branching phenomenon explicitly. 
The author believes the unified theory also can predict the 
other mode but the problem remains open. For aluminum, 
the predictions given by the unified model are nearly the 
same as that given by the SFMS theory. Only in the high 
frequency range k0d>100 can we observe some discrepancy 
in the dispersion curves. For transverse wave attenuation 
the prediction of the SFMS theory is slightly larger than that 
given by the unified theory.

Polycrystalline iron is a typical alloy with strong grain 
anisotropy. The predictions given by the two theories are 
shown in Fig. 4. For longitudinal velocity and attenuation, 
the predicted values at low frequency (k0Ld<1) are 
nearly identical. At intermediate to high frequencies, the 
discrepancies between the two models become obvious. The 
unified theory gives L-wave velocity systematically smaller 
than that give by the SFMS theory. The maximum value of 
the discrepancy is about 1%. Meanwhile, the unified theory 
gives attenuation coefficient systematically lower than that 
of the SFMS theory. For transverse waves, the two theories 
give nearly the same results for velocities at low frequencies, 
k0Td<1. At higher frequencies, the predictions given by the 
unified theory are systematically larger than that of the 
SFMS theory. The maximum value reaches up to 2% in the 
geometric regime. The unified theory gives attenuation 
coefficient uniformly lower than that by the SFMS theory. 
At intermediate frequencies the predictions given by the 
former are nearly 50% smaller than the later. 

Stanke [30] carried out comprehensive experimental 
studies on the attenuation behavior of polycrystalline 
materials. Planer transducers operating in pulse-echo mode 
and transmission mode are used to measure the attenuation. 
However, due to the limitation of the measurement system, 

Material

Reference 
property 

Voigt property
Reference 
velocity

Voigt velocity

λ(GPa)
μ 

(GPa)
λ

(GPa)

LV

(GPa)
V0L V0T LV  TV

Aluminum 55.01 26.30 54.92 26.42 6313.13 3121.02 6317.52 3128.13
Iron 114.41 75.47 109.60 82.00 5810.30 3098.67 5899.93 3229.95

304 SS 104.99 76.95 96.50 88.50 5685.14 3099.47 5843.36 3323.96
OFHC 
copper

104.49 49.12 100.26 54.86 4915.03 2419.34 5002.14 2556.79

Inconel 600 118.93 85.19 112.76 93.56 5918.23 3211.47 6025.37 3365.54

Table 2: Reference velocities of different materials (Unit: m/s).

Reuss Shtrikman Unified theory SFMS Hashin Voight
Al, VL 6308.3 6314.0 6314.5 6313.13 6314.5 6317.52
Al, VT 3113.5 3122.3 3122.9 3121.02 3123.0 3128.13
Fe, VL 5661.9 5764.0 5805.7 5810.30 5810.8 5899.93
Fe, VT 2892.8 3040.3 3099.3 3098.67 3106.5 3229.95

Table 3: Quasi-static limits of phase velocities predicted by different models 
(Unit: m/s).

The velocity and attenuation of longitudinal and 
transverse waves in Aluminum, Iron and Inconel 600 
predicted by the SFMS theory in the whole frequency range 
are shown in figure 2. From the numerical results we can 
observe the dispersion and attenuation behaviors of these 
materials exhibit several common features: 1) The dispersion 
curves of both L and T waves start from the velocities of the 
homogeneous reference materials. This shows that the quasi-
static limits of the coherent waves naturally converge to the 
velocities of the homogeneous reference materials; 2) At low 
frequencies k0d <1, the dispersion is nearly negligible, and 
the dimensionless attenuation increases with dimensionless 
frequency following a power law; 3) At intermediate 
frequencies, the dispersion slightly increases with frequency, 
meanwhile, a second propagation mode starts to appear. 
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Figure 2: Longitudinal and transverse velocity dispersion and attenuation of polycrystalline Aluminum, 
Iron and Inconel 600.
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Figure 3: Comparison of the predictions given by the SFMS model and the unified model [31], 
(a) longitudinal velocity and (b) attenuation, and (c) transverse velocity and (d) attenuation of Al.
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the phase information of the Fourier transform was missed 
and as a consequence, the velocity dispersions were not 
measured. The center frequency of the transducers varies 
from 10 MHz to 100 MHz, so the attenuation in a relatively 
broad band, ranging from 16.5 to 85 MHz is obtained. Before 
comparing the theoretical predictions with that measured 
in experiments, we first need to discuss several factors that 
may complicate the measurements and may influence the 
explanation of the experimental data. The first problem is the 
proper definition of the spatial autocorrelation distance a, 
as appeared in the expression of the spatial autocorrelation 
function exp(-r/a). For an idealized random medium that 
follows the Poisson statistics strictly, the mean cord length 
c  is equal to the half of the mean free path d  [30]. However, 
practical polycrystalline materials are not idealized Poisson 
media, and these two parameters are not always identical. 
For instance, the ratio for 304 stainless steel varies from 
0.74 to 0.81, i.e., (2 ) 0.74 0.81d c =  . The second factor 
worth noting is that the sample may not be a homogeneous 
material, the grain size varies from point to point, thus 
the measured signals can be distorted by the variation of 
grain size. Third, the polycrystal sample may contain twins 
whose crystallographic orientations are strictly correlated, 
this factor destroys the assumption that the orientations of 
different grains are uncorrelated. Fourth, the metal is not 
pure, actually they are often a complicated system composed 
of two or more chemical elements. For example, the stainless 
steel and plain carbon steel can be viewed as a binary 
system composed of C and Fe. Moreover, the finite beam 
width of practical transducers inevitably causes distorted 
signals different from an idealized plane wave signal. The 

quality of deconvolution method used to eliminate the beam 
effects also affect the accuracy of final results. With all these 
complicated factors in mind, Stanke [30] concluded that 
predictions of the average grain size with less than 20% error 
can be achieved using the unified theory. Figure 5 shows 
the experimental results for attenuation of OFHC copper 
sample (red line) along with the theoretical prediction given 
by the SFMS theory. Choosing the experimental data as the 
standard, the relative error of the theoretical attenuation is 
less than ±20%. In addition, the overall variation tendency 
of the experimental curve shows good agreement with the 
theoretical curves. The accuracy of the SFMS model is fully 
confirmed by this example.
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Figure 4: Comparison of the SFMS predictions with that of the unified model [31], (a) longitudinal velocity 
and (b) attenuation, and (c) transverse velocity and (d) attenuation of iron.
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Figure 5: Comparison of the SFMS predictions with experimental data [31] 
for longitudinal attenuation of OFHC copper.
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The experimental data for 304 stainless steel are shown 
in Figure 6. As pointed out by Stanke [30], the measured 
steel bar exhibit inhomogeneous microstructures, the grains 
at the edge of the bar (point d in [30]) is smaller than those 
at the center (point a). However, the grain size variation 
is relatively slow and in the scope of the transducer face 
(11 mm in diameter), the variation can be neglected. The 
attenuation coefficients measured at point a and d are 
converted into dimensionless quantities, as marked by the 
red and blue lines in figure 6(a). Once again, the overall 
variation tendency of the measured attenuation at both 
points show very good agreement with the theoretical curve. 
The experimental attenuation normalized using the original 
grain sizes given by Stanke [30] is slightly smaller than that 
given by the theory, as discussed above, this may be caused 
by the inaccurate evaluation of the spatial autocorrelation 
length.  If normalizing the experimental data using 0.9 times 
of the given grain diameter, as shown in Figure 6(b), the new 
set of curves show excellent agreement with that given by 
the SFMS theory. This example indicates the SFMS theory 
is capable of predicting the average grain size with relative 
error less than 10%.

Figure 7 presents the dispersion and attenuation of an 
Inconel 600 sample obtained using finite element simulation 
[56]. The Inconel sample is composed of 5210 randomly 
oriented grains with an average size of 500 μm. To emulating 
the pitch-catch measurement of a plane wave signal, a three-
cycle tune-burst pulse with a center frequency of 1-3 MHz 
is applied on one end surface of a prismatic bar, for which 
the side surfaces are subjected to symmetric boundary 
conditions. In an idealized case, a large number of realizations 
of the random media should be generated and the velocity 
and attenuation of each realization should be calculated 
to obtain statistically meaningful results. However, due 
to the high computational cost, only one realization of the 
material is performed. Figure 7(a) and (b) demonstrate 
the longitudinal velocity and attenuation normalized using 
the original average grain size in [56]. It is seen that the 
velocity first undergoes slow negative dispersion and then 
increase with frequency rapidly. This variation tendency 
is perfectly captured by the SFMS theory. The attenuation 
obtained using the FEM approach is systematically smaller 
than that given by the theory. As pointed out by Pamel [56], 
the predictions of the attenuation is largely dependent on 
the choice of d. Inspired by this conclusion, we renormalize 
the experimental data using a slightly smaller grain size, i.e., 
d=0.8d0, the results are replotted in figure 7(c) and (d). 

From figure 7(c) we see the velocity is still in good 
agreement with that predicted by the theory. Surprisingly, 
the dimensionless attenuation given by the numerical results 
show excellent agreement with the theoretical curves, as 
shown in figure. 7(d) gives. This example shows that the 
SFMS theory is capable of providing a satisfactory prediction 
for the velocity and attenuation of coherent waves in strongly 
scattering polycrystals. Since the numerical algorithm and 
the statistics of the grains have certain errors intrinsically, 
we do not give an estimate on the relative error.

Through the above examples we see the SFMS theory 
is capable of providing accurate predictions for both the 
velocity and attenuation of a large variety of polycrystalline 
materials. Comparison with the unified theory reveals that 
for polycrystalline materials with weakly anisotropic grains, 
the two theories provide nearly the same predictions, but 
for materials with strongly anisotropic grains, there are 
noticeable discrepancies between the two models. The 
unified theory gives smaller longitudinal velocity and larger 
transverse velocity at intermediate or high frequencies. It 
also gives attenuation coefficient systematically smaller 
than that given by the SFMS theory. However, more accurate 
numerical simulations and experimental studies are in 
need to justify which model is more accurate, especially in 
the high frequency range. Comparison with experimental 
results further confirm the accuracy of the SFMS theory, for 
most materials the theoretical predictions show very good 
agreement with experimental data. The results also suggest 
that if the basic assumptions are satisfied, i.e., statistically 
homogeneous, untextured with equiaxed grains, the SFMS 
theory is capable of predicting the average grain size with a 
relative error less than 10%. 
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Figure 6: Comparison of the SFMS predictions with experimental data [31] 
for longitudinal attenuation of 304 stainless steel, (a) normalized using the 
original average grain diameter, d0= 57.2μm for point a  and d0= 36.4μm for 
point d (b) normalized using new average grain diameters, d=0.9d0.
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Practical Applications of the New Model
In this section, we demonstrate the practical applications 

of the new model in nondestructive characterization of 
microstructures in the most frequently used jet engine alloys 
Ti64 and Ti6242. The velocity and attenuation of longitudinal 
and transverse coherent waves for pure titanium and its 
alloys are calculated. Both alpha (with hexagonal close-
packed grains, HCP) and beta (with body-centered cubic 
grains, BCC) phases are considered. Special attentions are 
paid to the sensitivity of ultrasonic propagation parameters 
to the interested microstructural characteristics, like grain 
size, crystallite symmetry, and chemical composition of 
alloys. As applications in seismology, we calculate the 
velocity and Q-factors of seismic waves in realistic iron 
models of the Earth’s uppermost inner core. The results 
are used to explain the observed velocity and attenuation. 
Most importantly, the consistent between the theoretical 
predictions and the measured data poses fundamental 
constraints on the correlation length (size of macrograins) 
and the grain anisotropy of the inner core. 

Ultrasonic nondestructive characterization of 
microstructures in Titanium alloys

Pure titanium exists in the form of alpha phase under 
882.5 °C, in the range of temperature between 882.5 °C to 
1668 °C, it exists in the form of beta phase. With the addition 
of alpha stabilizer or beta stabilizer, both the alpha and the 
beta phase can exist in a broad range of temperature, thus 

the titanium alloys in the form of alpha, beta or alpha+beta 
phases are all used [1-3]. Titanium alloys constitute the most 
important jet engine materials. Nondestructively evaluating 
the grain size, volumetric ratio of the alpha to beta phases, 
and monitoring the elastic property changes are the 
major purpose of ultrasonic nondestructive technologies 
[10,15,58-60]. As the first step towards the development of 
a comprehensive theoretical system for modeling ultrasonic 
scattering in engine-grade titanium alloys with complicated 
microstructures, we first calculate the dispersion and 
attenuation of pure Ti, Ti64 and Ti6242. For each type of 
alloys, we consider both the (near) α phase and the (near) β 
phase. The material parameters used in this work are shown 
in table 4.  Table 5 gives the reference properties and the 
Voigt average properties.
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Figure 7: Comparison of the SFMS predictions with FEM simulations [57] (a) longitudinal velocity, (b) 
attenuation with original average grain diameter d0=500μm, and (c) longitudinal velocity, (d) attenuation with 
best-fitting average grain diameter d=0.8d0.

Material
Elastic constants (GPa) Density 

C11 C12 C13 C33 C44 C66 ρ (kg/m3)

Pure α-Ti [15] HCP 162.0 92.0 69.0 180.0 46.7 35.0 4540

Pure β-Ti (1020 
°C) [15] BCC 129 101 101 129 37 37 4500

α-Ti64 [60] HCP 174.4 98.1 72.0 197.3 50.7 38.15 4540

β-Ti64 [60] BCC 151.2 108.0 108.0 151.2 41.1 41.1 4480

α-Ti6242 [61] HCP 170.0 98.0 86.0 204.0 51.0 36.0 4540

β-Ti6242 [61] BCC 250.2 119.0 119.0 250.2 115.3 115.3 4540

Table 4: Material properties of Titanium and its alloys.
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Figure 8 shows the velocity and attenuation of L and 
T waves in alpha phase Titanium alloys. Each dispersion 
curve starts from the wave velocity of the reference media 
(the quasi-static limit of the coherent wave). As pointed 
out before, one of the major difference between the unified 
theory and the SFMS theory is that they use different 
reference media: the former chooses the Voigt average 
properties for the homogeneous reference medium, while 
the later selects the properties of the reference medium 
by enforcing the volumetric average of the renormalized 
property fluctuation ( )abÎ x  vanish. This is one of the most 

important strategies adopted by the new theory to secure 
the fastest rate of convergence. In the low frequency regime 
k0Ld<1, the dispersion of the velocity is nearly negligible. In 
the intermediate frequency range, the velocity increases to 
a value slightly larger than the quasi-static limit, and then 
become constant again. This is a common characteristic of 
weak property fluctuation media, as that observed in the 
dispersion curves of Al alloy in figure 2. In the transition 
regime from intermediate to high frequencies, the velocity 
increase rapidly to its geometric limit, meanwhile, a second, 
slow mode starts to appear and its velocity decreases rapidly 

Material
Reference property Voigt property Reference velocity Voigt velocity

λ (GPa) μ (GPa) λ (GPa) µ (GPa) V0L V0T LV  TV

Pure α-Ti 78.29 43.29 77.81 43.95 6026.19 3087.92 6041.52 3111.37
Pure β-Ti 80.81 21.95 79.68 23.48 5264.35 2208.57 5304.92 2284.25

α-Ti64 82.93 47.39 82.36 48.18 6256.45 3230.84 6274.20 3257.66
β-Ti64 101.08 32.11 100.2 33.3 6074.32 2677.20 6101.81 2726.36

α-Ti6242 90.24 45.20 89.87 45.87 6307.82 3155.30 6324.73 3178.60
β-Ti6242 101.26 92.53 99.12 95.42 7941.42 4514.54 7991.74 4584.50

Table 5: Reference velocities of Titanium and its alloys (Unit: m/s).
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Figure 8: Velocity and attenuation of alpha phase titanium and its alloys.
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to the lower geometric limit. The difference between the upper and lower geometric limits is closely related to the fluctuation 
of material properties, i.e., the degree of grain anisotropy. The relatively small difference in these two limits indicates the 
alpha phase titanium possess relatively weak grain anisotropy. The variation tendency of attenuation coefficients of the 
alloys is similar to that for the materials in figure 2. One unique feature of the L-wave attenuations is that they all exhibit a 
hump in the intermediate region 1<k0Ld<10, which is caused by the mode conversion from longitudinal to transverse waves. 
The dispersion curves of transverse waves have a relatively simple pattern. The velocity remains constant in the broad band 
0<k0Td<10. At the end of the intermediate regime, a second, fast mode starts to appear and then the velocity of both the 
modes rapidly approaches the higher and lower geometric limits.
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Figure 9: Velocity and attenuation of beta phase titanium and its alloys.

The velocity and attenuation of beta phase Titanium alloys are shown in figure 9. The overall variation tendencies of 
the velocity and attenuation are similar to those of the alpha phase. It is seen the beta phase alloys have relatively strong 
grain anisotropy, so the difference between the two modes at geometric regime becomes large, meanwhile, the longitudinal 
velocity undergoes continuous positive dispersion in the intermediate range, where the “plateau stage” for weak fluctuation 
alloys nearly disappears. The grain anisotropy has more obvious effects on the transverse velocities which lead to an 
exceedingly large difference between the two geometric limits, for instance, the upper geometric limit of β-Ti raises by 18% 
and its lower limit decreases by -13% relative to the reference velocity.

To facilitate a comparison between the alpha and beta phase alloys and to observe the different variation tendencies of 
different alloys, the dispersion and attenuation curves are plotted in the same figure, see figure 10, where all the quantities are 
normalized to those of the α-Ti. As can be seen, for the same alloy the dispersion and attenuation curves of the alpha and beta 
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phases show clear distinctions. This important feature has 
significant implications for monitoring the manufacturing 
process of titanium alloys. The alloy billet or repaired parts 
normally undergoes a series of complicated heat treatments, 
including heating, annealing, quenching, during which the 
microstructures experienced complex transitions between 
alpha phase and beta phase. Ultrasonic monitoring the phase 
transition during these processing procedures helps us gain 
a better understanding of the microstructure evolution, and 
thus provides important technical strategy to ensure that 
the desired phase or phase composition are achieved. 

Ultrasonic dispersion and attenuation provide two 
important metrics for quantitative measurement of grain 
sizes [62,63]. We take α-Ti64 as an example to show the 
grain size effects on the dispersion and attenuation of 
ultrasonic waves. The dispersion and attenuation curves for 
α-Ti64 with different average grain size, varying from 20 μm 
to 100 μm, are depicted in figure 11. It is seen the dispersion 
and attenuation curves follow a scaling law, i.e., with the 
increase of grain diameter, the dispersion curves are scaled 
down along the frequency axis and the attenuation curves 
are scaled down along both axes. The longitudinal velocities 
at low frequencies nearly independent of the grain size. 
In the intermediate frequency range (10 < f < 200 MHz), 
the dispersion curves show obvious dependence on the 
grain size. The opposite behavior is observed for the size 
dependence of the attenuation curves. At low frequencies 
(0 < f < 20 MHz), the attenuation is strongly dependent on 

the grain size, the larger the grain diameter, the larger the 
attenuation. In the intermediate range (20 < f < 200 MHz), the 
dependence of attenuation on the grain size become weaker, 
which indicating that the attenuation of low frequency 
signals and the dispersion of intermediate frequency signals 
are good metrics of the average grain size. In the geometric 
regime (f > 500 MHz), the attenuation is independent on 
the frequency and inversely proportional to the average 
grain diameter. However, the very high frequency signals 
are rarely used in practical measurements due to its high 
attenuation.  For transverse waves, the velocity nearly keeps 
constant in the broad frequency region (0 < f < 70 MHz), so 
it is not a promising candidate for the measurement of grain 
size. Contrarily, the attenuation in this frequency regime 
shows strong dependence on the grain size, which indicates 
the transverse attenuation is a good indicator of the grain 
size.

In summary, the full-frequency range velocity and 
attenuation for the most frequently used jet engine alloys 
are obtained for the first time. Through comprehensive 
study on the effects of alloy phases and grain sizes on 
the ultrasonic propagation parameters, we demonstrate 
the great potential of the new multiple scattering theory 
in applications in quantitative characterization of 
microstructures in jet engine alloys. The new model is of 
great importance for the development of the next generation 
ultrasonic nondestructive inspection techniques for jet 
engine manufacturing and maintenance.  
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Figure 10: Sensitivity of velocity and attenuation to the phases and alloying elements of Titanium alloys: (a) 
longitudinal velocity, (b) longitudinal attenuation, (c) transverse velocity, (d) transverse attenuation.
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Velocity and attenuation of seismic waves in the 
Earth’s uppermost inner core

Seismic waves carry rich information about the 
structures and properties of the traversed volumes. Its 
unique capability of penetrating an exceedingly large depth 
into the Earth makes it one of the most important methods 
to detecting the structure of Earth’s inner core. The material 
composition and small-scale structure of the Earth’s inner 
core has drawn extensive attention from the geophysical 
and geochemical communities. Since direct measurement is 
prohibited by the large depth of the inner core, researchers 
can only conduct numerical simulations [65-67] or laboratory 
measurements [67] based on primary knowledge of the high 
temperature and high-pressure conditions that exist in the 
inner core. As discussed in [24], the inner core is most likely 
composed of polycrystalline iron or its alloys. Geochemical 
studies suggest that the iron crystallites may exist in two 
forms, i.e., the hexagonal close-packed (HCP) structure and 
the body-centered cubic (BCC) structure, under the extreme 
conditions at the inner core. First principle simulation has 
been proved a powerful tool for deriving the macroscopic 
elastic properties from the interatomic potentials when the 
external temperature and pressure conditions are specified. 
Using the obtained elastic properties, quantitative seismic 
scattering models can predict the accurate velocity and 
attenuation behavior of the material model, which in turn 
can be used to validate and improve the proposed material 
model through comparison with the measured seismic data. 

In the following we calculate the dispersion and Q-factors of 
six polycrystalline iron models, and try to give an explanation 
to the observed velocity and attenuation in the scattering 
scenario. The material properties used are adopted from 
Laio et. al. [64], Vocadlo [65], Belonoshko et. al. [66], and 
Mao et. al. [67], as listed in table 6. (Table 6)
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Figure 11: Effects of grain size on the velocity and attenuation of Titanium alloy α-Ti64.

Material model
Elastic constants (GPa) Density 

C11 C12 C13 C33 C44 C66 ρ (kg/m3)
1 [67] HCP 1533 846 835 1544 583 343.5 12610
2 [64] HCP 1697 809 757 1799 421 444 12885
3 [65] HCP 1730 1311 1074 1642 159 209.5 13155
4 [66] BCC 1561.6 1448.1 1448.1 1561.6 365.5 365.5 13580
5 [65] BCC 1603 1258 1258 1603 256 256 13155
6 [65] BCC 1795 1519 1519 1795 323 323 13842

Table 6: Material properties of iron polycrystalline models of the Earth 
uppermost inner core.

The properties of the homogeneous reference media and 
the Voigt average properties are listed in table 7. It is seen 
the velocities of these material are much higher than those 
under normal conditions due to the action of extremely high 
pressure and very high temperature.

The dispersion and Q-factors of longitudinal and 
transverse waves of hexagonal iron models are presented 
in figure 12. The Q-factors (actually the inverse Q-factors) 
are calculated by 1 2 2Im( ) Re( )Q k k− = , as elaborated in [50]. It 
describes the attenuation of the coherent waves. Similar to 
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the examples discussed above, there is only one propagation 
mode at low and intermediate frequencies, and two modes 
at high frequencies. The longitudinal velocities in the high 
frequency regime only deviate slightly from those of the 
reference media, from ±0.8% for Medium 2 to ±2.5% for 
Medium 1. However, the velocities of transverse waves in 
the high frequency regime exhibit very large variations, 
reaching up to ±10% for Media 1 and 3. The Q-factors of 

longitudinal waves demonstrate a very interesting variation 
tendency. At low frequencies (0<k0Ld<1) it increases with 
frequency following a power law, then the slope decreases 
rapidly and the Q-factor assumes a local maximum. After that 
the Q-factors decrease slightly and reach a local minimum at 
k0Ld≈10. As the frequency increasing, the Q-factor increases 
again and reaches its maximum value at k0Ld=40~100. In 
the geometric regime, the Q-factors of both modes decrease 
with frequency following an inverse power law.

Material model
Reference property Voigt property Reference velocity Voigt velocity (km/s)

λ (GPa) μ (GPa) λ (GPa) µ (GPa) V0L(m/s) V0T (m/s) LV (m/s) TV (m/s)
1 786.2 428.9 777.0 441.5 11418.09 5832.04 11473.52 5917.09
2 794.9 447.5 794.2 448.5 11452.18 5893.24 11456.59 5899.82
3 1195.3 207.3 1192.2 215.0 11062.52 3969.67 11104.70 4042.72
4 1358.6 195.8 1324.6 242.0 11352.56 3797.14 11540.41 4221.41
5 1226.9 219.5 1224.6 222.6 11253.28 4084.81 11266.44 4113.55
6 1455.4 234.9 1445.0 249.0 11793.39 4119.48 11847.78 4241.31

Table 7: Reference velocities of iron polycrystalline models of the Earth uppermost inner core.
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Figure 12: Velocity and Q-factors of hexagonal iron models of the Earth’s uppermost inner core.
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To compare their relative magnitudes, the longitudinal 
and transverse Q-factors are plotted in the same frequency 
scale, as shown in the first row of figure 13.  From the 
results we can see from low to intermediate frequency, 
the transverse Q-factors are systematically larger than the 
longitudinal Q-factors, but in the high frequency region, 
the relative magnitude reverses, which tells us at low to 
intermediate frequencies the attenuation of transverse 
waves is larger than that of longitudinal waves, while in the 
high frequency regime, the attenuation of transverse waves 
become smaller than that of longitudinal waves.  The ratios 
of the longitudinal to transverse Q-factors are depicted in 
the second row in figure 13. The results for Q-factor ratios 
further tell us the Q-factor ratios in the frequency range 
0<k0Td<60 is very small, normally well below 0.5. In the high 
frequency region, the four ratios approach four different 
geometric limits, ranging from 1.5 to 3.5.

The dispersion and Q-factors for cubic iron mode are 
shown in figure 14. The general features are similar to those 
of hexagonal iron models. One noticeable characteristic is 
that the two maxima and one minimum are more obvious 
than those of hexagonal iron. The geometric limits of the two 
transverse modes of Medium 4 deviate significantly from the 
reference medium for which the lower limit is 20% less than 
the reference velocity. (Figure 15)

The Q-factor ratios of cubic iron models are shown in 
figure 15. The remarkable feature is that at relatively low 
frequencies the value of the ratios become exceedingly 
small, uniformly less than 0.2, indicating that the attenuation 
of longitudinal waves in this range is much less than that of 
transverse waves. As a result of the large grain anisotropy of 
Medium 4, the geometric limits of Q-factor ratios vary in a 
broader range, from 1.5 to 5.5. 

The above numerical examples provide us a more explicit 
picture about the possible dispersion and attenuation of 
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Figure 13: Q-factors and Q-factor ratios of hexagonal iron models of the Earth’s uppermost inner core.

seismic waves propagating in the polycrystalline inner 
core. With these valuable knowledge, now we try to give an 
explanation to a series of longstanding problems which are 
actively discussed in the seismological community. Seismic 
waves reflected form the inner core like PKiKP waves exhibit 
strong attenuation. The inverse Q-factors of P waves varies 
between 0.0025 to 0.01. Meanwhile, the reflected P waves are 
also accompanied by strong coda, which are strong evidence 
indicating that the scattering attenuation is the dominant 
mechanism for the seismic attenuation. The observed P wave 
velocity (around 11000 m/s) shows good agreement with the 
Voigt average velocity of the material models, the difference 
between the two is normally less than 2%. However, the 
observed S wave velocity (3.5 to 3.67 km/s) is much smaller 
than the Voigt velocity (4.0 to 4.4 km/s) of the proposed 
material models. The discrepancy can be as large as 10% to 
15%. This has become a longstanding issue in geophysics. 
Some research proposed that there must be some degree of 
melting in the inner core. Other researchers believe that the 
low transverse velocity is caused by impurities or defects. 
Here we propose an explanation based on scattering. It is 
generally accepted that the average grain size lies between 
200 m to 90 km. From table 7 we can see the Voigt velocity of 
the longitudinal (P) waves are nearly the same as that of the 
reference velocity used in this work. In the following analysis 
we do not discriminate these two velocities and called both 
of them the Voigt velocity. The Voigt velocity of transverse 
(S) waves are also very close to the reference velocities used 
in this work except for Medium 4, so we do not distinguish 
these two quantities either. For simplicity, we choose the 
value of the Voigt velocity as: 11000Voigt

LV =  m/s, 4000Voigt
TV =

m/s. In order to evaluated the velocity and Q-factors, we 
first need to estimate the dimensionless wavenumber k0Ld 
and k0Td. Since the typical frequency of short period PKiKP 
waves is around 1 Hz, we adopt f=1 Hz. If using the relatively 
small diameter d=200m, then we get k0Ld=0.11, k0Td=0.314. 
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If using the relatively large diameter, d=90 km, then we have 
k0Ld=51.38, k0Td=141.3. For polycrystal model with small 
grain size, for example, d=200 m, the velocity of both P and 
S waves are nearly the same as the Voigt velocities, this is in 
contradiction with the fact that the velocities of the S waves 
are normally 10% less than the Voigt velocity. Meanwhile, 
the Q-factors of P waves lie between 10-6 to 10-4, much less 
than the observed values, normally between 0.0025 to 
0.01. All these facts clearly indicate the average grain size 
is larger than 200m. For polycrystal model with relatively 
large grain size, i.e., d=90 km, we can see from Figs. 12 and 
14 the P wave velocities of all the material models are still 
close to the Voigt velocity, varying within 2% relative to 
the Voigt average velocity. However, the S wave velocity of 
the slow mode, which is also the major mode with smaller 
attenuation and carrying more energy, is much smaller 
than the Voigt average, varying from 8% for Media 1, 3 to 
20% for Medium 4. Meanwhile, the Q-factors of the P waves 
lie between 0.001 and 0.01, which shows good agreement 
with the measured data.  From the above analysis we can 
see the new model is able to give a consistent explanation to 
the observed phenomena, including the abnormally slow S 

wave velocity and the Q-factors of P waves. The agreement 
between the predicted Q-factors with that measured in 
practical seismic data strongly shows that scattering plays a 
central role in determining the seismic wave attenuation. In 
the new model we neither introduce the melting mechanism 
to explain the S wave velocity, nor do we introduce 
viscoelastic mechanism to explain the attenuation. Finally, 
we need to point out that with the development of seismic 
imaging and signal processing technologies, along with more 
and more detailed knowledge of the structure and scattering 
behavior of the mantle and the lithosphere, it is possible to 
eliminate the influence of the mantle and the lithosphere 
heterogeneities, and extract the dispersion and Q-factors 
that exactly corresponds to the inner core. With the accurate 
experimental data, the grain anisotropy and the average 
grain size of the inner core can be inversely determined with 
the new model. 

Discussion
The comprehensive numerical study reveals several 

common features of the coherent waves in various 
polycrystals. At low frequencies, both longitudinal and 
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Figure 14: Velocity and Q-factors of cubic iron models of the Earth’s uppermost inner core.
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transverse waves have a single mode with a velocity near 
that of the reference medium. In the high frequency regime 
there are two propagation modes for both the longitudinal 
and transverse waves. The dispersion of the waves at low and 
high frequencies is very small, indicating the wave packet 
can propagate a long distance. In the intermediate frequency 
range, the longitudinal velocity slightly increases while the 
transverse velocity gradually decreases. The attenuation 
coefficients of both the longitudinal and the transverse 
waves increase following a power law at low frequency, 
and become constant near unity at high frequency. In the 
intermediate frequency range the longitudinal attenuation 
exhibits a hump, indicating strong mode conversion occurs.  
The Q-factors of both longitudinal and transverse waves 
increase following a power law at low frequency and 
decrease following an inverse power law at high frequency. 
The most interesting phenomenon is the longitudinal 
Q-factors show an additional maximum in the intermediate 
frequency range. Comparing the results in this work with 
those in the previous work [51], we see the bifurcation of 
the dispersion curves is a universal property of coherent 
waves in heterogeneous media, regardless of polycrystals 
or two-phase materials. The discoveries made in this work 
are of major importance to ultrasonic applications and 
seismology.  The average grain size of common polycrystals 
used in industry lies between several micros to a hundred 
micro, and the center frequency of most transducers varies 
from 0.5 MHz to 100 MHz, thus the ultrasonic waves actually 
lie in the low frequency regime in the scattering sense, i.e., 
k0d<10. Consequently the two propagation modes are rarely 
observed in the ultrasonic NDE. In contrary to industrial 
materials, the inhomogeneities in the Earth have a rather 
large characteristic size, normally lies between several 
kilometers to tens of kilometers, meanwhile, the frequency 
of seismic waves covers a broad band, from 0.01 Hz to 100 
Hz, thus the dimensionless frequency k0d varies from 0.1 
to 1000. Therefore, the seismic waves contain both low 
and high frequency components in the scattering sense. 
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Figure 15: Q-factors and Q-factor ratios of cubic iron models of the Earth’s uppermost inner core.

Actually seismic waves with a center frequency greater than 
1 Hz are generally regarded as high frequency waves. Thus 
the bifurcation phenomenon has significant implications 
for seismic wave explanation and imaging. As show in the 
previous work, it provides a new explanation to the observed 
Pn, Pg, Sn, Sg, P*, and S* phases of the seismic waves in the 
lithosphere, without invoking the layered model. In fact, the 
bifurcation of dispersion also happens to seismic waves in 
the mantle and the inner core, since they all exhibit certain 
degree of property fluctuation. In this sense, the occurrence 
of two propagation modes have strong potential in the 
explanation of multiple phases recorded in deep Earthquakes 
or teleseismograms, such as the mysterious high frequency 
precursors [68]. The magnitude and variation tendency of 
Q-factors are strongly dependent on the degree of material 
property fluctuation and the correlation length of the 
inhomogeneities, thus they can be used for inversion of the 
small-scale structure in the deep Earth. From this point of 
view, the model developed in this work and in the previous 
work [50] provide the theoretical foundation for statistical 
classification and modeling of the Earth.  

Numerical simulation of coherent waves in 
heterogeneous media has drawn broad attentions from both 
the ultrasonics and seismological communities [55,56,69-
71], and meaningful results have been obtained. However, 
there are still several technical challenges for conducting 
more accurate simulations. Most of current simulations are 
limited to relatively low frequency regime, i.e., k0d<10. To 
the author’s best knowledge, the high frequency behavior 
(k0d >100) has not been explored. In this case, each 
crystallite contains 20 to 50 wavelengths. To accurately 
capture the propagation characteristics, one should assign 
ten or more spatial steps in a single wavelength. Considering 
the fact that a statistically meaningful sample normally 
contains about 10000 crystallites, the computational cost 
is extremely expensive. Modern computational techniques 
like supercomputer, Graphic Processing Units, and parallel 
algorithms provide exciting opportunities for conducting 
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such simulation. Another challenge is the generation of the 
microstructures. As the theory requires, the sample should 
be macroscopically homogeneous, the size distribution 
should be well controlled so that the exponential correlation 
function is well realized. The grain boundaries should be 
dealt with carefully so that the scattering characteristics are 
accurately reflected. Finally, the time evolution algorithms 
should be pure, free from artificial damping, numerical 
dispersion and excitation. To obtain the dispersion and 
attenuation that are statistically meaningful, a certain 
number of simulations should be conducted, normally on 
tens to a hundred samples. The most challenging point for 
conducting accurate experimental study is the manufacture 
of the sample. As pointed out by the pioneering researchers, 
there are always impurities exist in the sample, such as voids, 
twins, and other inclusions [29,30,72,73]. The distribution 
of grain sizes is difficult to control accurately. Consequently, 
accurate and reliable experimental verification in the whole 
frequency range is still an open problem. 

Finally, we explore possible future developments of 
current model.  The current work only focuses on single 
phase polycrystals with equiaxed grains without preferred 
orientations. However, most practically important 
polycrystals exhibit more complicated microstructures 
due to different thermomechanical processing procedures. 
Thompson [10] classified these microstructures into 
four categories, 1) equiaxed grains without texture, 2) 
elongated grains without texture, 3) equiaxed grains with 
texture, 4) elongated grains with texture. For polycrystals 
with elongated grains and/or textures the scattering 
characteristics demonstrate obvious anisotropic behavior. 
Developing new multiple scattering theory which is capable 
of incorporating these complications has significant 
practical importance for quantitative characterization 
microstructures and imaging the small defects (like hard 
alpha-phase inclusions, microcracks etc.) in advanced 
engine alloys. Multi-phase alloy is another type of important 
polycrystalline materials. For single phase polycrystals, the 
material property fluctuation is solely due to elastic stiffness 
mismatch caused by random crystallographic orientations. 
The situation for multi-phase polycrystals are considerably 
more complicated since both mass density and elastic 
properties are random variables of spatial coordinates. As 
pointed out in [50], for this case the weak scattering theory 
gives unstable prediction for the propagation parameters. 
Nevertheless, the theory developed in this work is naturally 
suitable to study the ultrasonic scattering in multi-phased 
materials. Thus extending the current model for the case 
of multi-phased polycrystalline materials is one major 
task in future. The new model will enable the possibility of 
quantifying the volume ratio of the alpha phase to the beta 
phase in alpha+beta titanium alloys, which can be used to 
optimize the addition of alpha or beta stabilizers [15]. 

Accompanied with development of ultrasonic scattering 
model, different versions of ultrasonic grain noise models 
have also been proposed. The technical objective of 
grain noise model is two-fold, one is to properly remove 
the effects of grain noise and increase the capability of 
detecting and locating minor flaws in the buck materials, 

the other is to extract the microstructural information 
via backscattering coefficients or figure-of-merit (FOM). 
Rose [58-60] first obtained closed-form expressions of 
backscattering coefficients for polycrystalline materials 
with the use of independent scattering approximation 
(ISA) and the Born approximation. Later on, Han et. al. 
[15] extended the backscattering model to titanium alloys 
with duplex microstructures. Ghoshal and Turner [74,75] 
derived the ultrasonic backscatter signals in the context of 
diffuse backscatter measurements. They considered both 
multiple scattered mean and mean square response of the 
heterogeneous medium. Additionally, they introduced 
the Wigner transform techniques to describe the beam 
effects of a piston transducer. Turner and Weaver [76,77] 
also developed the radiative transfer theory to describe 
the diffusion of ultrasonic energy when the propagation 
distance is large and the ultrasound loss coherence. From the 
fundamental assumptions (ISA, the Born approximation, the 
weak anisotropy assumption, etc.) of the various grain noise 
models and radiative models, we see most of them are only 
applicable to polycrystals with weak property fluctuation, 
or only valid in the short-period of time when the multiple 
scattering has not fully developed. Based on the theoretical 
framework developed in this work, we can develop a most 
general radiative transfer theory and the corresponding 
grain noise model, which fully considers the multiple 
scattering effects, valid for strong scattering polycrystals, 
and puts no restrictions on the propagation time. 

Conclusion
This work lays the new foundation of the multiple 

scattering theory for polycrystalline materials with strong 
grain anisotropy. The integral representation of the 
displacement and strain Green’s function for polycrystalline 
materials is derived by using the homogeneous Green’s 
functions. The singularity of the Green tensor is properly 
considered and the renormalized integral equations 
governing the new set of field variables are formulated. 
Feynman’s diagram method is introduced to derive the 
renormalized Dyson’s equation. The system of integral 
equations is solved using the Fourier transform technique. 
The dispersion equations for the coherent waves are 
obtained, from which the exact dispersion and attenuation 
curves for a large variety of polycrystalline materials in 
the whole frequency range are further calculated. The 
accuracy of the model is validated through comparison 
with experimental and numerical results. Comparison with 
experimental data shows the model is capable of predicting 
the average grain size with a relative error less than 10%. 
Comprehensive study on the dispersion and attenuation of 
most frequently used materials, including pure titanium, 
Ti64 and Ti6242 is carried out to show the applications of 
the new model in ultrasonic NDE. It is demonstrated the 
model is capable of quantitatively characterize the effects 
of phase composition, grain size and grain anisotropy on 
the velocity and attenuation of various titanium alloys. As 
for applications in seismology, the velocity and Q-factors of 
both hexagonal and cubic iron models of the Earth’s inner 
core are calculated. Primary results show it is able to explain 
the observed phenomena like anormally slow transverse 
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wave velocity and the P wave attenuation. This work 
establishes a new theoretical foundation for developing 
the next generation quantitative ultrasonic techniques for 
microstructure characterization in various polycrystalline 
materials, which is of extreme importance for turbine jet 
engine manufacturing and inspection. The new model also 
demonstrates great potential for applications in seismic 
imaging and inversion of the material composition and 
structures in the Earth’s inner core.
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