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Abstract
This work presents some characteristics of MoNet, a digital platform 

for the modeling and visualization of complex systems. Emphasis is 
on the ideas that allowed the successful progressive development of 
this modeling platform, which goes along with the implementation of 
applications to the modeling of several studied systems. The platform can 
represent different aspects of systems modeled at different observation 
scales. This tool offers advantages in the sense of favoring the perception 
of the phenomenon of the emergence of information, associated with 
changes of scale. This paper also includes some criteria used for the 
construction of this modeling platform. The power of current computers 
has made practical representing graphic resources such as shapes, 
line thickness, overlaying-text tags, colors, and transparencies, in the 
graphical modeling of systems. By visualizing diagrams conveniently 
designed to highlight contrasts, these modeling platforms allow the 
recognition of patterns that drive our understanding of systems and 
their structure. Graphs reflecting the benefits of the tool regarding the 
visualization of systems at different scales of observation are presented 
to illustrate the application of the platform.

Keywords: Complex systems modeling; data visualization; agent-based 
systems; system’s model evolution.

Introduction
The increasing capacity of computers has enabled the numerical 

modeling of systems that a few decades ago was beyond our practical 
reach. The explosion of forms and styles to undertake the analysis of these 
systems led to the emergence of new ways of organizing research around 
names such as the Science of Complexity and Data Science. Whether or 
not they are ‘new’ Sciences, they reflect important differences in the way 
we do things today. 

Some decades ago, when computers were still humble calculating 
machines, we used to prefer to understand phenomena by locating their 
key aspects; the dominant factors of their behavior. To this end, science 
endeavored to synthesize the description of systems and reduce it to 
simple mathematical expressions. Thus, our conception of the world was 
limited by what it was possible to understand at the level or scale that 
we were able to represent synthetically. By the end of the ’80s, when 
computers became a commonly used research tool, their use was almost 
limited to the repetitions of deterministic calculations, leaving aside, 
considering the phenomena of information-emergence which frequently 
occurs when the representation of a system changes from one scale 
to another. Despite the initially algorithmic-centered, and afterward 
object-oriented programming techniques, it was already recognized 
that multiple scale systems modeling required more flexible paradigms 
of programming. Heylighen [1], for example, foresaw in 1991 the need 
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for computerized systems with the ability to select different 
ways of viewing the object-system, evaluate some properties 
and thus, modeling emergence. Nevertheless, there were not 
fully capable computers to develop in practice Heylighen’s 
emergence-modeling ideas.

The development of a set of best practices and 
programming paradigms has been a matter of discussion for 
the last three decades. Since 1987 Geoffrion [2,3] presented 
a series of papers defining the so-called Structural Modeling 
Language (SML). The SML relied on a modular structure 
to somehow organize the model’s entities and deal, up to 
some degree, with its complexity. This approach, however, 
needed to fix a priori the broadest and finest detail levels 
of the model, with its obvious disadvantages regarding 
the adaptation possibilities. In this line of development, 
Computer-Aided Software Engineering (CASE) appeared 
in the early ‘90s as a formal methodology to establish the 
limits of the model, the internal entity relationships and 
to recognize the system model’s major modules. With 
the increasing diversity of situations where models were 
needed, more flexible conceptions of computerized systems 
and their design process appeared. In 2004, for example, 
Makowsky [4] offered the Structural Modeling Technology 
(SMT); a set of paradigms directed to cope with the challenges 
imposed by complex systems. However, those technologies 
appeared and grew up around the concept of a database. 
Then, the traditional structures used to represent the vast 
volumes of data we now have access to, are predominantly 
databases. Databases are structures of regular shapes and 
great simplicity, probably the simplest imaginable, that 
being able to organize the data in orthogonal grids, offers 
advantages for rapid data location. However, traditional 
databases represent very different forms from those of the 
modeled system. Nature is not orthogonal. Perhaps because 
of the limitations of our ‘mental languages’, the system 
models developed through databases adopt orthogonal 
forms and do not allow the system itself to describe its form 
by means of the model. Conventional databases are too rigid 
structures.

The discussion about strategies to overcome the burden 
of analyzing data associated with complex problems with an 
increasingly detailed perspective is growing in its intensity. 
Studies devoted to the Visual Analysis of Texts [5] and Deep 
Learning [6] deserve to be mentioned. 

The objective of this paper is to discuss and spread 
information about a modeling platform we started 
developing during 2012, and which we named MoNet. 
Developing MoNet was motivated by the need for a general-
purpose framework to support us in the realization of diverse 
experiments related to complex systems, information 
theory, and the quantitative analysis of languages. According 
to the experience while building MoNet, five features should 
be included as part of the internal structure of any program 
developed for the modeling of complex systems: network 
data and visual structure, localizing agents and their 
attributes thru the system net, a language for data recording 
and management, access to complex non-declarative data-
types and the capability for graphic-resource management. 

Elements of a Multiple-Scale System Modeling 
Platform

Due to their nature, modeling complex systems is an 
activity challenging to plan. Complexity itself resists being 
synthesized, and essential or dominant aspects of the system 
modeled are hard to recognize. Most complex systems 
models are justified as a tool to learn about the behavior 
and properties of the system. Therefore, the conventional 
paradigms of computer model design are prone to fail when 
the subject of the model is a complex, evolving system. MoNet 
is the name of the platform used as a basis in this work. 
So far, most uses of MoNet are within the field of complex 
systems and information theory quantitative analysis of 
languages. There are five components in which we think 
MoNet’s capabilities reside. This section depicts the aspects 
we consider essential for the success of any complex system 
analysis platform.

Network data and visual structure
Whereas traditional data structures, made up of tables, 

leave little freedom to adjust their form to the nature and 
condition of the modeled system, the data organized in the 
form of a network offer the capacity to grow in a virtually 
limitless adjustable form. A typical barrier in systems with 
data recorded in conventional databases is the construction 
of tables in which fields are assigned to the registration of 
properties of the entities to which each table is destined. 
This implies the system’s design must advance in order to 
accurately establish the agents’ properties which in turn 
describe the system, thus compromising the possibilities the 
system itself has to indicate the aspect it is more convenient 
to grow or to deepen into more detailed levels. In contrast, 
the structure of the proposed data record is in the form of a 
network. More specifically, it is a file tree that can be shared 
among several data storage devices. Such a configuration 
can be considered as a Scale-Free structure that can grow 
with virtually no limits.

MoNet builds models any complex system by decomposing 
the system in the agents (parts) comprising it. While the 
union of these agents forms or describes the totality of the 
container-agent, there must not be any overlap of these 
contained agents. MoNet can model these internal agents 
by decomposing them into ‘smaller’ agents. Therefore, an 
increasingly detailed description of the system is possible by 
adding more decomposing agents into the model’s branch 
where there is interest for a more detailed description. The 
resulting agent hierarchy forms a network model structure 
which shape resembles a tree, with an agent located at each 
node of the tree. We refer to a node decomposed in further 
detailed agents as a ‘BRANCH’ node. If the node is at the end 
of the tree (is not further decomposed), we call it a ‘LEAF’. 
Figure 1 illustrates a system using this multi-scale logical 
representation.

Several types of files are used to organize the agents that 
make up the modeled system. Figure 2 illustrates the generic 
structure of a system’s hypothetical model. The first file-
type corresponds to the files describing ‘LEAF’ agents. These 
files can be recognized by their ‘.NPD’ extension. Agents 
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comprised of other agents, thus represented by ‘BRANCH’ 
nodes, are recorded with files with the extension ‘.NPM’.

In its general use, MoNet represents an agent by showing 
the components at the highest scale level. Figure 3, which 
is consistent with Figures 1 and 2, illustrates the tabular 
description of agent ‘Root’ by showing its contained agents 
in each row of a grid. In this case the agents ‘Agent1.Node1’, 
‘Agent2.Node2’, ‘Agent3.Node3’ and ‘Agent4.Node4’ are the 
components of agent ‘Root’. Notice not all attributes apply 
to all contained agents included in the table, meaning that 
agents of different nature may live together as descriptors of 
their container agent.

The third type of file is used to record a selection of 
elements, branches or leaves. Once the elements of a sub-set 
of the system have been selected, they can be visualized in the 
same graphical interface and have all the tools of analysis and 
graphs for their study, that now has the capacity to treat the 
system from different scales of observation simultaneously. 

The extension of these files is ‘.NPS.’

Localizing agents and their attributes thru the 
system net

The replacement of the classical database with 
independent data files imposes the need to develop strategies 
for locating files according to criteria and filters. Commands 
that define the search addresses and other criteria for the 
location of the required information are essential for the 
proper functioning of a system with this architecture. There 
are several forms of these commands, and their number 
grows as the simulation platform evolves. Specially designed 
tags can be used to indicate the exact location of a target 
agent, as well as the name and the value of an attribute to 
specify any required condition. 

A value exiting within the model net is signaled by setting 
the value of three coordinates: 

a. COORD. PATH: the agent’s file path, 
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Figure 1: Hypothetical multi-scale model of a complex system.

 

Figure 2: Hypothetical model of file structure showing the relationship between the files and the hierarchical membership relationship.
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b. COORD.Agent.Name: the agent’s ID or Tag name , and 

c. COORD.Agent.AttribName: the agent’s attribute which 
value is the one being searched.

A general expression pointing to an agent’s attribute-
value is complete with a sentence like:

<~> COORD. PATH </~>COORD.Agent.AttribName<@> 
COORD.Agent.Name </@>

The delimiter tags ‘<~>‘ and ‘</~>‘, and ‘<@>‘ and 
‘</@>‘, indicate the expressions enclosed are the ‘COORD. 
PATH’ and the ‘COORD.Agent.Name’ respectively. These 
three coordinates can appear in any order.

The ‘COORD. PATH’ is used to specify the location of the 
file where the searched value is. The syntaxes might be one 
of the following:

COORD. PATH: <~><PathAttrib.LINK> </~>
COORD. PATH: <~>’Literaly written agent’s File Path’ 

</~>
COORD. PATH: <~><Rr.FileType.SearchDirection></~>
In the lastly presented syntax, the phrase ‘Rr’ represents 

the radius, in terms of the network of node-files distance. 
The phrase ‘FileType’ indicates the type of agent being 
searched. Some proper values may be NODE, BRANCH , 
LEAF or <*Any*>. The phrase ‘SearchDirection’ indicates the 
direction in which the radius is applied. Some proper values 
of the ‘SearchDirection’ may be SUB, SUPRA, or <*Any*>. 
The system is in charge of properly handling the coherence 
of the expression used to specify the ‘COORD. PATH’. For 
example, when the searched node file is defined literally or 
by the ‘<PathAttrib.LINK>’, the radius, the file type, and the 
search direction lose their relevance and do not need to be 
mentioned. When the ‘COORD. PATH’ segment is omitted 
the system assumes the searched path corresponds to the 
opened node file.

The ‘COORD.Agent.Name’ is used to specify which of the 
agents contained in the specified ‘COORD. PATH’, has the 
searched value. The syntax is as follows:

COORD.Agent.Name: <@><Agent’sIDAttribName> = 
Agent’sIDAttribVal</@>

Finally, the ‘COORD.Agent.AttribName’ specifies the 
name of the attribute evaluated, and the syntax is as follows:

COORD.Agent.AttribName: <Attrib’sName>
The following are examples of how an expression 

pointing to a value may look like:
<~><R1.NODE.SUB></~><Agent’sAttribName> 

<@><Tag.STRN> = <*Any*></@>
<~>’FilePath’</~><Agent’sAttribName><@><ID.STRN> 

= ’AgentID’</@>
<~>’FilePath’</~><Agent’sAttribName><@><AttribVa-

lName.STRN> = AttribValCond</@>
When the referred attribute belongs to the agent being 

focused, the agent’s attribute value can be pointed just by 
the ‘COORD.Agent.AttribName’: <Attrib’sName>.

It is worth to highlight the fact that these expressions 
may lead to values describing several agents. The conditions 
established in the ‘COORD. PATH’ and the ‘COORD.Agent.
Name’ may hold for many agent-files and many agents within 
any agent-file. Thus the searched value may be a set of scalar-
values, becoming a complex data structure. To represent 

these data-structures, we introduce the Autonomous Data 
Representation that explained in a section of this document.

There are also ways to indicate agent localization tags 
within the system net. Thus, for example, the tags <BRANCH> 
or <LEAF> would indicate that the searched nodes are 
branches or leaves. If the tags were <BRANCH.SUPRA> or 
<LEAF.SUB>, then they would be branches in the higher 
hierarchy nodes, or leaves in nodes somehow contained 
inside the imaginary tree rooted from the starting node. 

The specification of agent subsets within the whole set of 
agents comprising a complex system must be a capability of 
the computerized system. The context of this capacity should 
serve not only to filters used when selecting of information 
but also for its use as a parameter that conditions the scope 
of the equations which describe the interrelationships of the 
agents of the system. 

A language for data recording and management
For a computerized system operating over unstructured 

data - data not organized according to its position in a table 
in a database -, some intelligence in the capacity of data 
identification and location is essential. In the absence of a 
database, there are no data-management codes available. 
The handling of the information depends then on pseudo-
languages that must be elaborated by the constructor of the 
system.

The purpose of this document is not to present complete 
documentation on the script language developed to serve 
MoNet. However, I have considered it convenient to include 
here the description of some of its characteristics. Let’s start 
by saying that we will use the name ‘Localizer’ to refer to it. 
Localizer uses delimiting tags as the ‘<’ and ‘>’ characters, 
similar to those used by the html and xml languages, to 
refer to objects, as agents and attributes, in its file-codes. 
The file describing an agent consists of statements that, 
except for special cases, occupy a line in the text file. There 
are statements to specify the agent’s name, the location of 
the file on the web, the agents directly related, the agents 
contained, and other properties describing the agent the file 
corresponds to. 

A file describing an agent contains the identification 
and location of the agent and references to the other agents 
that are contained or directly related to the agent being 
described. The ‘<NODE>’ and ‘</NODE>’ tags are used 
to indicate the start and the end of a contained agent or 
node. All describing attributes of the node must appear in 
between those delimiting tags. These attributes with their 
corresponding values are specified with the syntax: 

 <Attribute’sName>Attribute’sValue

When the attribute’s value is an expression leading to 
its actual value, the tag ‘<CurrentVal >’ is used to signal the 
current computed value of the expression and the syntax 
becomes:

 <Attribute’sName>Attribute’sExpression< CurrentVal 
>Attribute’sValue
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Figure 3: Decomposition of a higher-scale container agent into the lower-scale (more detailed) agents. The node Root.NPM is the container of all 
other agents shown in Figure 2. Agents Node1.NPM, Node2.NPM, and Node4.NPM are BRANCH-type, represented with light-orange colored 
attribute-cells in the grid. Agent3 Node3.NPD is a LEAF-type node represented with cyan colored attribute-cells in the table. Grey shadowed cell 
indicate a non-applicable attribute for the corresponding agents.

Figure 4: File associated with the description of agent Root in Figure 3 using the MoNet system.

MoNet recognizes an Attribute’s Expression (used 
to compute the current value of an attribute) when the 
expression begins with the characters ‘= ‘. The Arithmetic 
operations are expressed with the syntax and operator’s 
precedence order typically used by any standard software. 
When needed, the operator’s precedence order can be 
specified using parenthesis ( ‘(‘ and ‘)’ ). Transcendental 
functions can be invoked using its name followed by the 
applicable function arguments enclosed by parenthesis, as 
follows: 

= Function’sName (Argument1, Argument 2, … Argument N)

An Argument can be an expression. Therefore, nesting 
expressions are allowed. A list of attributes is registered us-
ing the character ‘|’ to separate the sentences referring to 
each parameter. A whole line describing an agent having N 
attributes may look as follows:

<NODE><Attribute1’sName>Attribute1’sValue|<Attri-
bute2’ sName>Attribute2’sValue| …

|<AttributeX’sName>AttributeX’sExpression<Curent

-Val> AttributeX’sValue| …

|<AttributeN’sName>AttributeN’sValue </NODE>

Some attributes are present for an agent. These attri-
butes are referred to as ‘inherent attributes’ since they are 
inherently needed to describe any agent. Examples 
of this kind of attributes are those with identification 
purposes and the attributes used to register the path 
where the agent’s corresponding file is located. The 
type of node, which can be LEAF or BRANCH, is also 
an inherent attribute.

The name of the properties or attributes of the agents 
must include the specification of the data type. Thus, if for 
example, an attribute is used to register the name of an agent, 
the attribute must be referred to as ‘Name.STRN’, which 
specifies that it is a string type. The data types included are: 
.STRN, .INTG, .FLOT, .BOOL, .LINK, .LIST, .STRC and .EXEC, 
corresponding to string, integer, floating, boolean, file-link, 
element-list, the structure of elements, and executable 
command. Figure 4 shows the code corresponding to the 
branch-file (,NPM file) corresponding to the agent ‘Root’ of 
Figures 1, 2, and 3.

The autonomous data representation
There are many ways proposed to estimate the complexity 

of a system [7–9]. The procedures to quantify complexity 
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may vary among these estimating procedures. However, all 
of them use as the most determining factor the amount of 
information required to describe the system. Considering 
also that a system is a result of overlapping the actions of 
many subsystems, each with its own structures, the description 
of that becomes a difficult task. Descriptions are also dependent 
on the perspective and scale of observation [10]. 

Most modern languages and programming frameworks 
offer some structure-types as part of their capabilities to 
model compound data-types. Python, for example, offers the 
‘Tuples’ as a type representing a couple of values. In Python, 
tuples can be connected to form a list of Tuples. However, 
non-regular structures, like trees or meshes, are complicated 
to represent. Another system, the statistical program R, 
allows different types of operations involving arrays. It not 
only allows for mathematical operations between matrixes 
and vectors but also allows ‘element to element’ operations, 
which adds some power when array interactions, different 
from the mathematical arithmetic operations, are needed. 
Certain pattern configurations of the elements are required, 
compromising the adaptability of the data to the ‘shape’ of 
the agent-attribute being modeled.

MoNet features a special syntax with the capability to 
handle a more general and flexible conception of compound 
data-types. The data itself sets the shape of the data 
structure. Thus we named this feature the ‘Autonomous 
Data Representation.’ Thus, a compound data-structure 
written by the Autonomous Data Representations does not 
need to be declared. The Autonomous Data Representation 
is a logical syntactic representation that serves to represent 
two classes of structure topologies. The first class includes 
regular structures as orthogonal arrays of many dimensions. 

The second class includes scale-free structures as trees and 
meshes, which may not be seen as regular topologies; these 
are the most challenging applications of this technique.

Figure 5 shows examples of structures of various 
dimensional shapes, represented according to the 
Autonomous Data Representation syntax here proposed. 
The representation consists of separating the single values 
of the array by using a special splitter symbol. The splitter 
symbol itself indicates the dimensional substructures it is 
separating. The splitter symbol presents square brackets 
pointing outwards in both ends. Hence, if the structure 
whose components are being separated, is an array of 
three dimensions, then the splitter symbol ‘]0[‘ defines 
the 2-dimensional arrays comprising the 3-dimensional 
structure, the splitter symbol ‘]1[‘ indicates the limits of the 
one-dimensional arrays comprising the 2-dimensional arrays 
and finally, the symbol ‘]2[‘ indicates the 0-dimensional, 
elementary values comprising the 1-dimensional arrays.

Figure 6 shows how to represent some examples of 
meshes. When the network’s shape offers the possibility of 
being described with a noticeable characteristic, listing the 
node tags and this characteristic suffice for the description. 
Thus, the network a) in Figure 6 can be seen as either a 
3-element clique or a 3-element ring. Therefore, it can be 
described as <Cq>{A]0[B]0[C} or <Rn>{A]0[B]0[C} where 
<Cq> and <Rn> are the corresponding net characteristic 
topology tags and A, B and C are the values representing 
some property at each node. Networks c) and d) are a five-
element ring and a five-element star respectively. Hence their 
descriptions include the tags <Rn> and <St>. The net e) can 
be seen as the superposition of the ring and the star of cases 
c) and d), and its description can be expressed by shifting the 

Struct. 
Name

Struct. 
Dims. Structure Depiction Autonomous Representation

Scalar 0 A A
Tuple 1 A,B A]0[B

Vector 1 G, F, D, S, A G]0[F]0[D]0[S]0[A
Matrix 2

Matrix 3

Tree

Multidimensional structure representation

G, F, D, S, A
1, 2, 3, 4, 5
v, w, x, y, z

G]1[F]1[D]1[S]1[A]0[
1]1[2]1[3]1[4]1[5]0[v]1[w]1[
x]1[y]1[z

A, B, C
D, E, F
K, L, M

o, p, q
r, s, t

u, v, w

X, Y, Z
a, b, c
d, d, d

A]2[B]2[C]1[D]2[E]2[F]1[K]2[
L]2[M]0[o]2[p]2[q]1[r]2[s]2[
t]1[u]2[v]2[w]0[X]2[Y]2[Z]1[
a]2[b]2[c]1[d]2[d]2[d

s

A

p w

X a b c

A]0[p]1[s]2[X]1[w]2[a]2[b]2[c>1
<2

Figure 5: Examples of multidimensional structures according to the Autonomous Data Representation.
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dimension indexes and using the dimensional index ‘]0[‘to 
join them in a unique expression. Similarly, in case g) the 
dimensional index ‘]0[‘is used to join two networks through 
elements D and K, and forming a description of the whole 
structure. The linking elements are indicated with the tag 
‘<*>’.

Graphic resource management
Recently, a graphical representation of data has become 

a very active field of research. The construction of abstract 
graphs to model the behavior of the systems also gets 
great attention. The capacity of current computers allows 
the development of techniques to represent animated 
multidimensional graphs, referring to phenomena that exist 
in multidimensional spaces. Thus, using bubbles, instead 
of points, with diameters and variable colors, and other 
geometric properties, it is possible to go beyond the two 
dimensions in graphics that in the strict sense, remain 2D.

The graphic representation is a language in itself. 
The graphing capabilities should be able to adjust to the 
requirements of each particular situation to maximize the 
amount of information transferred to the observer. One way 
to equip the system with these possibilities is to allow the 

association of the properties of the agents with the graphic 
properties of the graphic elements used. We can cite the 
diagrams of Gapminder [11] or the Python Open Source 
Graphing Library, that use bubbles to represent agents or 
entities. The diameters of the bubbles are associated with 
an extensive-variable of the entity; population, volume, 
and size are typical cases of extensive-variables which are 
appropriately represented by marker or bubble sizes. 

Unlike the graphing modules of other systems, MoNet 
incorporates the use of graphical properties as a philosophy 
that manages those graphical resources. The intensive 
use of this philosophy allows the representation of many 
dimensions in the 2D chart. The components of each 
primary color, the shape and the thickness of the edge of the 
bubbles, the degree of fill-opacity and the edge are some of 
the graphic properties that can be associated with the value 
of the attributes of each agent represented in the graph. 
Figure 7 shows one of the reticles dedicated to this aspect 
of the system. MoNet offers these capabilities by applying 
the concept of Graphics Resource Management. A panel 
consisting of a grid with the graphical resource parameters 
and their possible values. This approach allows connecting 
these resources to the selected model parameters without 

Structure Depiction Autonomous Representation

<Rn>{A]0[B]0[C}  or  
<Cq>{A]0[B]0[C}

<Cq>{A]0[B]0[C]0[D}

<Rn>{A]0[B]0[D]0[C}                          
Notice the order has  meaning; A i s  
not in di rect contact with D.

<St>{F]0[A]1[B]1[C]1[D]1[E}                 
Notice F i s  in a  jerarquica l  different 
poss ition from other elements . 

<St>{F]0[A]1[B]1[C]1[D]1[E} + 
<Rn>{A]0[B]0[C]0[D]0[E}  or  
<St>{F]1[A]2[B]2[C]2[D]2[E}]0[<Rn>{A]
1[B]1[C]1[D]1[E}

<St>{F]1[A]2[B]2[C]2[D]2[E}]0[A]1[E]1[
D]1[C]1[B

<St>{F]2[A]3[B]3[C]3[D]3[E}]1[A]2[E]2[
<*>D]2[C]2[B  ]0[  
<Rn>{G]1[H]1[J]1[<*>K}

g) 5-Elem. F.Centered 
Star Plus  an 
incomplete 5-E Ring 
plus  a  4-Element 
Ring connected by 
elements  D and K

f) 5-Elem. F.Centered 
Star Plus  an 
incomplete 5-E Ring

e) 5-Elem. F.Centered 
Star Plus  a  5-E Ring

a) 3-Element Cl ique 
or 3-E Ring

Network structure representation

Network Name

b) 4-Element Cl ique

c) 4-Element Ring

d) 5-Element F 
Centered Star

B C

A
B C

D

A
B C

D

A

AB E

D
FC

AB E

D
F

C

AB E

D
F

C

A
B

E

D

F
C

H
G

J
K

Figure 6: Examples of network synthetic representation with the Autonomous Data Representation.
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the need for programming by setting the attribute’s name 
and linking its value to a graphical property. Figure 7 
illustrates how this works. The value of the bubble ‘Border 
Opacity’ is fixed in the column ‘Value.STRN’ setting it to 
250, the position of the bubble’s coordinates X and Y adopt 
the values of attributes ‘<X Fractal.FLOT>’ and ‘<Y Fractal.
FLOT>’ correspondingly. 

This type of connection between values and graphical 
properties is a common capacity for the graph modules of 
most systems. However, in MoNet’s procedures, a graphic 
property value may also be defined by an expression or a 
function. The ‘Node Size’, as is exemplified in Figure 7, may 
be a function of an attribute, the ‘<Complexity.FLOT>’ in this 
case, because its value is specified as ‘= 4 * <Complexity.
FLOT> ^0.5’. Thus, in Monet this feature which acts as a 
flexible ‘hinge’ between the model and the represented 
graph bringing the possibility of creating elaborated graphs 
even for those users,who are not programmers or the ones 
who are reluctant to code.

Applications and Results
The specific needs for a multi-scale system modeler 

have led us to develop MoNet: a locally conceived computer 
system that we have developed to perform our experiments. 
MoNet has evolved for about six years now. During this 
period MoNet has been used as the basis to perform several 
experiments, including the symbolic analysis of languages 
[12–14], Information-structure analysis [8], musical genres 
comparison [15], and institutions fractal-representation 
[16]. After conceiving the idea and building an initial 
software structure, the construction of the system has 
been guided to respond to those needs that appear thru the 
development of each experiment, always sticking to some 
basic rules of programming, such as the use of data abstract 
representations to allow for its universal application. 
Therefore, it is fair to accept these experiments have 
performed as a crucial role in the development of MoNet, 

establishing a mutual relationship between the modeling 
platform and the experiments.

MoNet’s graphic user interface
MoNet records all agents comprising a system in related 

but independent files. Each agent’s description includes its 
attributes and the contained sub-agents’ descriptions. The 
agents ‘know’ its location within the file-structure network 
as well as how it relates to other agents. This agent-formed 
system description goes from an upper-level agent, which 
may be considered the root, down to a succession of branches 
of agents progressively described with inner agents and 
more detailed attributes, until the formed description tree 
reaches a level where the agents do not contain more in-
depth agents and are described by attribute values only. 

This treelike structure is appropriate to resemble the 
way system- elements self-organize and function In nature, 
thus it successfully captures the hierarchical relationship 
among the system elements. MoNet allows navigating thru 
the system’s structure by showing each agent component in 
a grid where contained sub-agents are described in a row of 
cells. The cells in an agent-row may, or may not, show the 
value of an attribute, organized in columns. There are ways 
to indicate whether or not the attribute is applied to the 
specific sub-agent. Figure 3 illustrates how different colors 
are used to indicate the scope of an attribute. 

A cell containing an attribute consisting of a link to 
another agent can be seen at an inner scale. The agent 
description’s target may show up in another window 
sharing the same interface anatomy, but applied to another 
observation scale and may focus a different aspect of the 
system. These features enable the interface to represent 
agents of a variety of natures in the same grid. Its capacity 
to grow and to extend the boundaries of the system’s 
description is practically unlimited. MoNet’s interface and 
file-structure serve to keep organized large sets of systems 
being modeled, thus allowing for the proper administration 

Figure 7. MoNet Graphics Resource Management Panel.
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of each system’s model at the scale level selected. MoNet has 
been the basis to accomplish studies of ‘families’ of highly 
complex descriptions of systems [15,16]. 

Pseudo-languages to handle and organize 
unstructured data

Localizer, the script language developed, together 
with the autonomous representation of data has allowed 
the control of the complex data structure that serves each 
computer model. In order to understand the dimension of 
the difficulty that the program faces, the requirements of 
this program can be compared with those of a spreadsheet. 
In a spreadsheet, the models are described by reference 
to the position of each element in a grid. These reticular 
structures can grow up to three dimensions, which make 
up the so-called ‘workbooks.’ In the present case, the data 
structure may have any shape; it can be reticular, such as 
spreadsheets, or trees representing a particular hierarchy 
between data, or meshes, which due to their low required 
regularity, have the capacity to represent even more 
complex situations. Logically, the flexibility of being able to 
represent any hierarchical structure, or system of relations 
through the form of the network of data files, will be paid 
at the time when the system needs to locate a piece of data, 
which comparatively would be harder in a mesh than when 
using orthogonal coordinates; as would be the case in the 
spreadsheets. A language must be available that allows 
the localization of data in that flexible structure, allowing 
the natural structure of any system to be appropriately 
represented by the data structure built at different levels of 
detail.

Capabilities for rich visualization tools and multiple 
scale representation

The philosophy of managing graphics resources to 
increase the readability of two-dimensional graphics has 

allowed for the representation of seven or even more 
dimensions in 2D graphics. The graphical resources used 
include the positions on the X and Y axes (angle and radius 
for polar coordinates) and various graphical properties of 
the bubbles that represent each agent within the system 
such as diameter, shape, the thickness of the edge line, Fill 
opacity, edge opacity, and component of each primary color. 
The visualization of model attributes by means of graphical 
representation properties has been widely used during 
the last decade. Pioneering this style of graphing was Hans 
Rosling with his son Ola Rosling and his daughter-in-law Anna 
Rosling Ronnlund. They built beautifully animated graphs to 
show worldwide statistics and made them available through 
a web site cited in [11]. What is proposed here extends this 
concept to all available graphic properties to integrate such 
graphic capabilities to the numerical computer modeler to 
obtain more than just a visualization tool, but a complex-
system modeler that uses visualization as one of its means 
to depict experimental results.

As a sample of the results obtainable with these features, 
we refer to two studies. The first one is the engineering 
thesis by S. Pizzo [16], where she describes the hierarchical 
organization of different sized institutions. Figure 8 shows 
fractals associated with the organizational structures of a 
Venezuelan TV channel and the Universidad Simón Bolívar, 
also in Venezuela. The Appendix includes a brief explanation 
of the parameters used to form these fractals.

The second is a study by Febres and K. Jaffe [15] where 
they ‘measured’ the affinity music pieces according to genres, 
composers, geographical regions, and epochs. Figure 9 
illustrates the result of graphing academic music entropy 
versus symbol diversity. We used the data set created for the 
previous paper by Febres and Jaffe [15] to create the graph 
shown in Figure 9. In the previous study, we encountered 
entropy and symbolic diversity patterns in music of 

 
Figure 8: The representation of two organizational structures. Both representations offer fractal views of the structure of two 
different institutions. These fractal representations include measures of organizational complexity (bubble diameter), and work 
orientation towards production (green), administrative (red), and service (blue) tasks. Figure 8a shows the structure corresponding to 
a Venezuelan TV channel and Figure 8b shows the structure of the Universidad Simon Bolivar. Both representations are fractallike 
diagrams which allow for a quick visual evaluation of the relative order for both institutions. Presented here with permission of 
Stefhani Pizzo [16].
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different genres. Now, with the graph of Figure 9, it can be 
seen a minimum entropy located at about a symbol specific 
diversity of 0.015. The bubble thickness also indicates this 
minimum entropy exists when music is grouped at the scale 
of composers. We think this observation is possible thanks 
to the integration of the graphical representation with the 
coexistence of several scales in the same graph. A version of 
this Figure, showing tags indicating the name of the agent 
each bubble belongs to, is included in the Appendix.

MoNet’s data structure and its capacity for evolution 
The organization of data in a hierarchical way in a tree-

shaped structure offers advantages over its orthogonal 
counterpart such as tables in conventional databases. The 
tree structure organizes the agents, each formed by a data 
file, into nested directories according to the hierarchical 
order considered with a dominant nature in the modeled 
system. In most recognizable systems, this hierarchical 
organization leads to the recognition of subclasses of agents 
that populate the model with numbers distributed in an 
approximated logarithmic way (or exponential, depending 
on the point of view).

This feature gives the data structure the capability 
of growing into further detail for those selected entities 
for which this data-complexity increase is justified. On 
the contrary, for conventional databases, increasing the 
description detail of an entity would require an additional 
table, where space for all instances of the entity must be 
reserved, despite the real need for the detailed description of 
only some of the instances. This difference provides the tree-
data structure with the advantage of being more efficient in 
terms of reducing data redundancy, and more importantly, 
the tree-data structure offers a much more flexible structure 
allowing for faster and limited risk experimentation when 
expanding the details represented in the data register.

Discussion
Flexibility vs. data structure

The construction of computer programs based on 
structured data has long been the commonly accepted way 
of approaching the problem of designing systems. The use of 
tables to represent object properties has become a capable 
vehicle for organizing objects represented in the computer 
model and the information system. Techniques to represent 
relationships between different types of entities have been 
a significant advance in the modeling of complex systems 
during the 1990s. 

Even before their splendor time, when CASE Tools 
dominated the Information Systems project activities, the 
limitations of this system design technique were already 
identified. In a study published in 1988, Charles Martin [17] 
mentioned some limitations of CASE Tools he considered 
necessary, as methodology constraints, administration 
difficulties, documentation inadequacies, and graphic-artist 
requirement. Leaving this reference without additional 
comment lacks fairness with CASE tools. Case Tools were 
perhaps the single most relevant information system design 
during the early ’90s. At that time, the still limited computer 
capacity and the early operative network dominance did not 
allow a more extensive impact of CASE Tools.

Today, when working with complex systems became 
crucial to most information systems, platforms for 
computerized modeling suffer from the constraints imposed 
by the rigidity of table-based architectures. The tables 
make it difficult to represent hierarchies and relations of 
belonging. 

Modeling systems are intended to represent an 
environment authentically. If this environment cannot 
be adequately described with a list of attributes and their 
values, such a description would not correspond to a system 

Figure 9: Entropy vs. Specific Symbolic Diversity of music. Representation of pieces of MIDI academic music. The chart shows normalized 
entropy (vertical axis: entropy computed using logarithms at the base equal to the symbolic diversity) and the specific symbolic diversity 
(horizontal axis: number of different symbols divided by the total number of symbols) for various scales of observation: periods or types of 
music (shown with bubbles with the thickest border), composers (shown with bubbles with medium thickness border), pieces and fragments 
of pieces (shown with bubbles with the thinnest border). The area of the bubbles is proportional to the length of music information included 
as data for this graph. See Figure A3 in the Appendix for this graph with the bubbles labeled.
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with dynamics and evolution. It is more appropriate to 
describe the system as the collection of all agents comprising 
the system’s scale level. Expressing the relationships among 
agents result in a better depiction. If we describe each agent 
through the agents comprising it at the immediately smaller 
scale level and continue this process until reaching the 
most detailed description, we obtain a depicting structure 
that better resembles the modeled system’s behavior. A 
description structure like this one can even grow and shrink 
at every scale, thus being closer to the objective of resembling 
the “life” activity of the real system. Conventional databases 
accomplish managing attributes but lack the flexibility to 
adapt its shape to represent the system’s structure evolution. 
Additionally, the hierarchically organized data structures 
are based on classification trees that store data following 
their levels of detail according to the observation scale — 
making us more effective in the possibility of implementing 
distributed modeling and parallel data processing.

Development speed versus adaptability
It is often attempted to measure the size and power 

of programs by specifying their number of routines or 
instructions. These dimensions refer more to the work and 
the cost of designing and coding a computerized program 
than to the actual performance of the final result. In fact, if we 
had to bet on the better of the two programs, we would better 
regard rely upon the lighter more than on, the heavier. There 
are more appropriate measures to evaluate the quality of 
software segments. Some of these measures are well known. 
One of them is the concept of Computational Complexity, 
which refers to the estimation of the resources required by 
an algorithm to achieve a result. The evaluated resources 
are typically time and memory space. The problem is that 
Computational Complexity evaluates the performance of an 
algorithm, while today, in most cases, a system consists of 
many ‘coexisting’ algorithms in an environment full of other 
components, and where the effectiveness of the algorithms 
does not necessarily define the effectiveness of the whole 
software.

As for the search and read times of the file associated 
with an agent, conventional databases certainly allow search 
times much lower than the crawling required for locating 
an agent in a directory and file network. However, the 
algorithms of search in tables require the implementation of 
indexes that ‘hide’ much fragility in the databases and that 
require significant efforts of maintenance. 

MoNet’s network-like data store and the pseudo 
languages needed to control and use the data were developed 
independently. Recently we came across the relatively new 
NoSQL databases. MoNet’s works with a file-data structure 
very similar to the NoSQL database structures. Thus, the 
same weaknesses as the need to develop a query language, 
difficulty to backup data and low standardization, should be 
expected. However, it should be mention after these issues 
are overcome, there is a great deal of independence and 
adaptability which justify the effort, especially at the initial 
stages of the developing process. Once the system is working 
and allowing its application to real use, the system itself, 
frequently indicates what the good design decisions are.

In an environment of research and productivity 
where performance is more closely associated with the 
speed with which the computer platform conforms to the 
particular requirements of an experiment, it is convenient 
to adopt a data structure capable of assimilating objects of 
a novel nature without a major struggle in the process of 
development. Having an own interpreted script-language, 
capable of incorporating new requirements, while keeping 
previously established criteria and syntax elements, or on 
the contrary, incorporating new criteria and making the 
syntax to evolve, offers important advantages in this regard.

The scenario of modelling complex systems
Perhaps the most highlighting capability resulting from 

MoNet’s architecture is the possibility for modeling large 
sets or families of complex systems, and to represent aspects 
of them to form complete landscapes of systems, and to offer 
the possibility of visually enhance our empirical sense of the 
behavior of the complex systems. 

Conclusion
The representation of complex systems based on 

independent file structures and without databases seems 
to be the way that provides the necessary flexibility 
to model today’s systems, whose structure changes in 
dynamics that conventional databases are unable to 
pursue. MoNet’s development initiated in 2011. The 
experience with MoNet as a lasting modeling platform, 
confirms this systems’ architecture is viable and that it 
offers effective representations of the phenomenon of 
the emergence of information that occurs with changes 
in the scale of observation. The development of MoNet 
has not been absent from difficulties and harsh technical 
problems. Storing model’s data in a similar way to the 
NoSQL databases, imposes the need for developing pseudo 
functional languages, data structures, searching algorithms 
and filters, graphic interfaces and even novel strategies for 
input data. When considering starting the development of 
a system, these barriers may bias the decisions in favor of 
predeveloped tools and make the ‘illusory’ decision to solve 
problems by incorporating them into the system. Possibly 
the development conditions of MoNet, an environment 
where MoNet has served to describe, control and organize 
scientific simulations that work as experiments, have made 
feasible to apply the best decision of implementation and 
not necessarily the fastest. This experience shows the high 
adaptability that comes along with these developing criteria, 
is worth it.

When the perspective on software design is not dominated 
by a commercial character, the techniques that should be 
adopted are those that offer possibilities of growth and 
adaptation to the increasingly frequent changes of today’s 
environment. These results suggest that software treatment 
as a language capable of adapting to the requirements and 
evolve towards high levels of effectiveness, offers advantages 
in the medium term, compensating for the costs of the slow 
start that characterize this style of programming.
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Supplementary Materials
Graphs of previous studies using MoNet are included 

in the Appendix. Full scale and working graphs are 
available at http://gfebres.net (click on downloads and 
downloadMonet.4) [18].
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