
Inno Journal of Multidisciplinary
Research and Reviews

Volume 1: 2
J Multidis Res Rev 2019

Basis to Develop a Platform for Multiple-Scale Complex Systems Modeling and
Visualization: Monet

Gerardo L Febres* Department of Processes and Systems, Universidad Simón Bolívar, Venezuela

Article Information
Article Type: Research
Article Number: JMRR117
Received Date: 16 September, 2019
Accepted Date: 30 September, 2019
Published Date: 07 October, 2019

*Corresponding Author: Gerardo L Febres, Department
of Processes and Systems, Universidad Simón Bolívar,
Baruta, Edo Miranda, 01080, Venezuela. Tel: + 58 414 333
7513; Email: gerardofebres(at)usb.ve

Citation: Febres GL (2019) Basis to Develop a Platform
for Multiple-Scale Complex Systems Modeling and
Visualization: Monet. J Multidis Res Rev Vol: 1, Issu: 2
(35-46).

Copyright: © 2019 Febres GL. This is an open-access
article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the
original author and source are credited.

Abstract
This work presents some characteristics of MoNet, a digital platform

for the modeling and visualization of complex systems. Emphasis is
on the ideas that allowed the successful progressive development of
this modeling platform, which goes along with the implementation of
applications to the modeling of several studied systems. The platform can
represent different aspects of systems modeled at different observation
scales. This tool offers advantages in the sense of favoring the perception
of the phenomenon of the emergence of information, associated with
changes of scale. This paper also includes some criteria used for the
construction of this modeling platform. The power of current computers
has made practical representing graphic resources such as shapes,
line thickness, overlaying-text tags, colors, and transparencies, in the
graphical modeling of systems. By visualizing diagrams conveniently
designed to highlight contrasts, these modeling platforms allow the
recognition of patterns that drive our understanding of systems and
their structure. Graphs reflecting the benefits of the tool regarding the
visualization of systems at different scales of observation are presented
to illustrate the application of the platform.

Keywords: Complex systems modeling; data visualization; agent-based
systems; system’s model evolution.

Introduction
The increasing capacity of computers has enabled the numerical

modeling of systems that a few decades ago was beyond our practical
reach. The explosion of forms and styles to undertake the analysis of these
systems led to the emergence of new ways of organizing research around
names such as the Science of Complexity and Data Science. Whether or
not they are ‘new’ Sciences, they reflect important differences in the way
we do things today.

Some decades ago, when computers were still humble calculating
machines, we used to prefer to understand phenomena by locating their
key aspects; the dominant factors of their behavior. To this end, science
endeavored to synthesize the description of systems and reduce it to
simple mathematical expressions. Thus, our conception of the world was
limited by what it was possible to understand at the level or scale that
we were able to represent synthetically. By the end of the ’80s, when
computers became a commonly used research tool, their use was almost
limited to the repetitions of deterministic calculations, leaving aside,
considering the phenomena of information-emergence which frequently
occurs when the representation of a system changes from one scale
to another. Despite the initially algorithmic-centered, and afterward
object-oriented programming techniques, it was already recognized
that multiple scale systems modeling required more flexible paradigms
of programming. Heylighen [1], for example, foresaw in 1991 the need

www.innovationinfo.org

J Multidis Res Rev 2019 36

for computerized systems with the ability to select different
ways of viewing the object-system, evaluate some properties
and thus, modeling emergence. Nevertheless, there were not
fully capable computers to develop in practice Heylighen’s
emergence-modeling ideas.

The development of a set of best practices and
programming paradigms has been a matter of discussion for
the last three decades. Since 1987 Geoffrion [2,3] presented
a series of papers defining the so-called Structural Modeling
Language (SML). The SML relied on a modular structure
to somehow organize the model’s entities and deal, up to
some degree, with its complexity. This approach, however,
needed to fix a priori the broadest and finest detail levels
of the model, with its obvious disadvantages regarding
the adaptation possibilities. In this line of development,
Computer-Aided Software Engineering (CASE) appeared
in the early ‘90s as a formal methodology to establish the
limits of the model, the internal entity relationships and
to recognize the system model’s major modules. With
the increasing diversity of situations where models were
needed, more flexible conceptions of computerized systems
and their design process appeared. In 2004, for example,
Makowsky [4] offered the Structural Modeling Technology
(SMT); a set of paradigms directed to cope with the challenges
imposed by complex systems. However, those technologies
appeared and grew up around the concept of a database.
Then, the traditional structures used to represent the vast
volumes of data we now have access to, are predominantly
databases. Databases are structures of regular shapes and
great simplicity, probably the simplest imaginable, that
being able to organize the data in orthogonal grids, offers
advantages for rapid data location. However, traditional
databases represent very different forms from those of the
modeled system. Nature is not orthogonal. Perhaps because
of the limitations of our ‘mental languages’, the system
models developed through databases adopt orthogonal
forms and do not allow the system itself to describe its form
by means of the model. Conventional databases are too rigid
structures.

The discussion about strategies to overcome the burden
of analyzing data associated with complex problems with an
increasingly detailed perspective is growing in its intensity.
Studies devoted to the Visual Analysis of Texts [5] and Deep
Learning [6] deserve to be mentioned.

The objective of this paper is to discuss and spread
information about a modeling platform we started
developing during 2012, and which we named MoNet.
Developing MoNet was motivated by the need for a general-
purpose framework to support us in the realization of diverse
experiments related to complex systems, information
theory, and the quantitative analysis of languages. According
to the experience while building MoNet, five features should
be included as part of the internal structure of any program
developed for the modeling of complex systems: network
data and visual structure, localizing agents and their
attributes thru the system net, a language for data recording
and management, access to complex non-declarative data-
types and the capability for graphic-resource management.

Elements of a Multiple-Scale System Modeling
Platform

Due to their nature, modeling complex systems is an
activity challenging to plan. Complexity itself resists being
synthesized, and essential or dominant aspects of the system
modeled are hard to recognize. Most complex systems
models are justified as a tool to learn about the behavior
and properties of the system. Therefore, the conventional
paradigms of computer model design are prone to fail when
the subject of the model is a complex, evolving system. MoNet
is the name of the platform used as a basis in this work.
So far, most uses of MoNet are within the field of complex
systems and information theory quantitative analysis of
languages. There are five components in which we think
MoNet’s capabilities reside. This section depicts the aspects
we consider essential for the success of any complex system
analysis platform.

Network data and visual structure
Whereas traditional data structures, made up of tables,

leave little freedom to adjust their form to the nature and
condition of the modeled system, the data organized in the
form of a network offer the capacity to grow in a virtually
limitless adjustable form. A typical barrier in systems with
data recorded in conventional databases is the construction
of tables in which fields are assigned to the registration of
properties of the entities to which each table is destined.
This implies the system’s design must advance in order to
accurately establish the agents’ properties which in turn
describe the system, thus compromising the possibilities the
system itself has to indicate the aspect it is more convenient
to grow or to deepen into more detailed levels. In contrast,
the structure of the proposed data record is in the form of a
network. More specifically, it is a file tree that can be shared
among several data storage devices. Such a configuration
can be considered as a Scale-Free structure that can grow
with virtually no limits.

MoNet builds models any complex system by decomposing
the system in the agents (parts) comprising it. While the
union of these agents forms or describes the totality of the
container-agent, there must not be any overlap of these
contained agents. MoNet can model these internal agents
by decomposing them into ‘smaller’ agents. Therefore, an
increasingly detailed description of the system is possible by
adding more decomposing agents into the model’s branch
where there is interest for a more detailed description. The
resulting agent hierarchy forms a network model structure
which shape resembles a tree, with an agent located at each
node of the tree. We refer to a node decomposed in further
detailed agents as a ‘BRANCH’ node. If the node is at the end
of the tree (is not further decomposed), we call it a ‘LEAF’.
Figure 1 illustrates a system using this multi-scale logical
representation.

Several types of files are used to organize the agents that
make up the modeled system. Figure 2 illustrates the generic
structure of a system’s hypothetical model. The first file-
type corresponds to the files describing ‘LEAF’ agents. These
files can be recognized by their ‘.NPD’ extension. Agents

www.innovationinfo.org

J Multidis Res Rev 2019 37

comprised of other agents, thus represented by ‘BRANCH’
nodes, are recorded with files with the extension ‘.NPM’.

In its general use, MoNet represents an agent by showing
the components at the highest scale level. Figure 3, which
is consistent with Figures 1 and 2, illustrates the tabular
description of agent ‘Root’ by showing its contained agents
in each row of a grid. In this case the agents ‘Agent1.Node1’,
‘Agent2.Node2’, ‘Agent3.Node3’ and ‘Agent4.Node4’ are the
components of agent ‘Root’. Notice not all attributes apply
to all contained agents included in the table, meaning that
agents of different nature may live together as descriptors of
their container agent.

The third type of file is used to record a selection of
elements, branches or leaves. Once the elements of a sub-set
of the system have been selected, they can be visualized in the
same graphical interface and have all the tools of analysis and
graphs for their study, that now has the capacity to treat the
system from different scales of observation simultaneously.

The extension of these files is ‘.NPS.’

Localizing agents and their attributes thru the
system net

The replacement of the classical database with
independent data files imposes the need to develop strategies
for locating files according to criteria and filters. Commands
that define the search addresses and other criteria for the
location of the required information are essential for the
proper functioning of a system with this architecture. There
are several forms of these commands, and their number
grows as the simulation platform evolves. Specially designed
tags can be used to indicate the exact location of a target
agent, as well as the name and the value of an attribute to
specify any required condition.

A value exiting within the model net is signaled by setting
the value of three coordinates:

a. COORD. PATH: the agent’s file path,

Largest scale

Medium scale

Finest detail

Branch

Leaf

Node.1

Node.2.1

Node.4

Node.2

Root

Leaf.211

Node..41

Node.11

Leaf.111

Leaf..112

Leaf.12

Leaf.3

Leaf.411

Leaf.42

Leaf.213

Leaf.212

Figure 1: Hypothetical multi-scale model of a complex system.

Figure 2: Hypothetical model of file structure showing the relationship between the files and the hierarchical membership relationship.

www.innovationinfo.org

J Multidis Res Rev 2019 38

b. COORD.Agent.Name: the agent’s ID or Tag name , and

c. COORD.Agent.AttribName: the agent’s attribute which
value is the one being searched.

A general expression pointing to an agent’s attribute-
value is complete with a sentence like:

<~> COORD. PATH </~>COORD.Agent.AttribName<@>
COORD.Agent.Name </@>

The delimiter tags ‘<~>‘ and ‘</~>‘, and ‘<@>‘ and
‘</@>‘, indicate the expressions enclosed are the ‘COORD.
PATH’ and the ‘COORD.Agent.Name’ respectively. These
three coordinates can appear in any order.

The ‘COORD. PATH’ is used to specify the location of the
file where the searched value is. The syntaxes might be one
of the following:

COORD. PATH: <~><PathAttrib.LINK> </~>
COORD. PATH: <~>’Literaly written agent’s File Path’

</~>
COORD. PATH: <~><Rr.FileType.SearchDirection></~>
In the lastly presented syntax, the phrase ‘Rr’ represents

the radius, in terms of the network of node-files distance.
The phrase ‘FileType’ indicates the type of agent being
searched. Some proper values may be NODE, BRANCH ,
LEAF or <*Any*>. The phrase ‘SearchDirection’ indicates the
direction in which the radius is applied. Some proper values
of the ‘SearchDirection’ may be SUB, SUPRA, or <*Any*>.
The system is in charge of properly handling the coherence
of the expression used to specify the ‘COORD. PATH’. For
example, when the searched node file is defined literally or
by the ‘<PathAttrib.LINK>’, the radius, the file type, and the
search direction lose their relevance and do not need to be
mentioned. When the ‘COORD. PATH’ segment is omitted
the system assumes the searched path corresponds to the
opened node file.

The ‘COORD.Agent.Name’ is used to specify which of the
agents contained in the specified ‘COORD. PATH’, has the
searched value. The syntax is as follows:

COORD.Agent.Name: <@><Agent’sIDAttribName> =
Agent’sIDAttribVal</@>

Finally, the ‘COORD.Agent.AttribName’ specifies the
name of the attribute evaluated, and the syntax is as follows:

COORD.Agent.AttribName: <Attrib’sName>
The following are examples of how an expression

pointing to a value may look like:
<~><R1.NODE.SUB></~><Agent’sAttribName>

<@><Tag.STRN> = <*Any*></@>
<~>’FilePath’</~><Agent’sAttribName><@><ID.STRN>

= ’AgentID’</@>
<~>’FilePath’</~><Agent’sAttribName><@><AttribVa-

lName.STRN> = AttribValCond</@>
When the referred attribute belongs to the agent being

focused, the agent’s attribute value can be pointed just by
the ‘COORD.Agent.AttribName’: <Attrib’sName>.

It is worth to highlight the fact that these expressions
may lead to values describing several agents. The conditions
established in the ‘COORD. PATH’ and the ‘COORD.Agent.
Name’ may hold for many agent-files and many agents within
any agent-file. Thus the searched value may be a set of scalar-
values, becoming a complex data structure. To represent

these data-structures, we introduce the Autonomous Data
Representation that explained in a section of this document.

There are also ways to indicate agent localization tags
within the system net. Thus, for example, the tags <BRANCH>
or <LEAF> would indicate that the searched nodes are
branches or leaves. If the tags were <BRANCH.SUPRA> or
<LEAF.SUB>, then they would be branches in the higher
hierarchy nodes, or leaves in nodes somehow contained
inside the imaginary tree rooted from the starting node.

The specification of agent subsets within the whole set of
agents comprising a complex system must be a capability of
the computerized system. The context of this capacity should
serve not only to filters used when selecting of information
but also for its use as a parameter that conditions the scope
of the equations which describe the interrelationships of the
agents of the system.

A language for data recording and management
For a computerized system operating over unstructured

data - data not organized according to its position in a table
in a database -, some intelligence in the capacity of data
identification and location is essential. In the absence of a
database, there are no data-management codes available.
The handling of the information depends then on pseudo-
languages that must be elaborated by the constructor of the
system.

The purpose of this document is not to present complete
documentation on the script language developed to serve
MoNet. However, I have considered it convenient to include
here the description of some of its characteristics. Let’s start
by saying that we will use the name ‘Localizer’ to refer to it.
Localizer uses delimiting tags as the ‘<’ and ‘>’ characters,
similar to those used by the html and xml languages, to
refer to objects, as agents and attributes, in its file-codes.
The file describing an agent consists of statements that,
except for special cases, occupy a line in the text file. There
are statements to specify the agent’s name, the location of
the file on the web, the agents directly related, the agents
contained, and other properties describing the agent the file
corresponds to.

A file describing an agent contains the identification
and location of the agent and references to the other agents
that are contained or directly related to the agent being
described. The ‘<NODE>’ and ‘</NODE>’ tags are used
to indicate the start and the end of a contained agent or
node. All describing attributes of the node must appear in
between those delimiting tags. These attributes with their
corresponding values are specified with the syntax:

 <Attribute’sName>Attribute’sValue

When the attribute’s value is an expression leading to
its actual value, the tag ‘<CurrentVal >’ is used to signal the
current computed value of the expression and the syntax
becomes:

 <Attribute’sName>Attribute’sExpression< CurrentVal
>Attribute’sValue

www.innovationinfo.org

J Multidis Res Rev 2019 39

Agent3.Node.

2018.10.29.11.10.50.142 Set Column HeaderOwnerNode Path.LINK5

2

Property Name

At Row

At Col

Node3.Attr ib 1 Val

Node1.Attr ib 3 Val

Node4.Attr ib 3 ValNode4.Attr ib 2 Val

Node2.Attr ib 2 Val

Node1.Attr ib 2 Val

Node2.Attr ib 1 Val

Node1.Attr ib 1 Val

Node3.Attr ib 3 Val

Figure 3: Decomposition of a higher-scale container agent into the lower-scale (more detailed) agents. The node Root.NPM is the container of all
other agents shown in Figure 2. Agents Node1.NPM, Node2.NPM, and Node4.NPM are BRANCH-type, represented with light-orange colored
attribute-cells in the grid. Agent3 Node3.NPD is a LEAF-type node represented with cyan colored attribute-cells in the table. Grey shadowed cell
indicate a non-applicable attribute for the corresponding agents.

Figure 4: File associated with the description of agent Root in Figure 3 using the MoNet system.

MoNet recognizes an Attribute’s Expression (used
to compute the current value of an attribute) when the
expression begins with the characters ‘= ‘. The Arithmetic
operations are expressed with the syntax and operator’s
precedence order typically used by any standard software.
When needed, the operator’s precedence order can be
specified using parenthesis (‘(‘ and ‘)’). Transcendental
functions can be invoked using its name followed by the
applicable function arguments enclosed by parenthesis, as
follows:

= Function’sName (Argument1, Argument 2, … Argument N)

An Argument can be an expression. Therefore, nesting
expressions are allowed. A list of attributes is registered us-
ing the character ‘|’ to separate the sentences referring to
each parameter. A whole line describing an agent having N
attributes may look as follows:

<NODE><Attribute1’sName>Attribute1’sValue|<Attri-
bute2’ sName>Attribute2’sValue| …

|<AttributeX’sName>AttributeX’sExpression<Curent

-Val> AttributeX’sValue| …

|<AttributeN’sName>AttributeN’sValue </NODE>

Some attributes are present for an agent. These attri-
butes are referred to as ‘inherent attributes’ since they are
inherently needed to describe any agent. Examples
of this kind of attributes are those with identification
purposes and the attributes used to register the path
where the agent’s corresponding file is located. The
type of node, which can be LEAF or BRANCH, is also
an inherent attribute.

The name of the properties or attributes of the agents
must include the specification of the data type. Thus, if for
example, an attribute is used to register the name of an agent,
the attribute must be referred to as ‘Name.STRN’, which
specifies that it is a string type. The data types included are:
.STRN, .INTG, .FLOT, .BOOL, .LINK, .LIST, .STRC and .EXEC,
corresponding to string, integer, floating, boolean, file-link,
element-list, the structure of elements, and executable
command. Figure 4 shows the code corresponding to the
branch-file (,NPM file) corresponding to the agent ‘Root’ of
Figures 1, 2, and 3.

The autonomous data representation
There are many ways proposed to estimate the complexity

of a system [7–9]. The procedures to quantify complexity

www.innovationinfo.org

J Multidis Res Rev 2019 40

may vary among these estimating procedures. However, all
of them use as the most determining factor the amount of
information required to describe the system. Considering
also that a system is a result of overlapping the actions of
many subsystems, each with its own structures, the description
of that becomes a difficult task. Descriptions are also dependent
on the perspective and scale of observation [10].

Most modern languages and programming frameworks
offer some structure-types as part of their capabilities to
model compound data-types. Python, for example, offers the
‘Tuples’ as a type representing a couple of values. In Python,
tuples can be connected to form a list of Tuples. However,
non-regular structures, like trees or meshes, are complicated
to represent. Another system, the statistical program R,
allows different types of operations involving arrays. It not
only allows for mathematical operations between matrixes
and vectors but also allows ‘element to element’ operations,
which adds some power when array interactions, different
from the mathematical arithmetic operations, are needed.
Certain pattern configurations of the elements are required,
compromising the adaptability of the data to the ‘shape’ of
the agent-attribute being modeled.

MoNet features a special syntax with the capability to
handle a more general and flexible conception of compound
data-types. The data itself sets the shape of the data
structure. Thus we named this feature the ‘Autonomous
Data Representation.’ Thus, a compound data-structure
written by the Autonomous Data Representations does not
need to be declared. The Autonomous Data Representation
is a logical syntactic representation that serves to represent
two classes of structure topologies. The first class includes
regular structures as orthogonal arrays of many dimensions.

The second class includes scale-free structures as trees and
meshes, which may not be seen as regular topologies; these
are the most challenging applications of this technique.

Figure 5 shows examples of structures of various
dimensional shapes, represented according to the
Autonomous Data Representation syntax here proposed.
The representation consists of separating the single values
of the array by using a special splitter symbol. The splitter
symbol itself indicates the dimensional substructures it is
separating. The splitter symbol presents square brackets
pointing outwards in both ends. Hence, if the structure
whose components are being separated, is an array of
three dimensions, then the splitter symbol ‘]0[‘ defines
the 2-dimensional arrays comprising the 3-dimensional
structure, the splitter symbol ‘]1[‘ indicates the limits of the
one-dimensional arrays comprising the 2-dimensional arrays
and finally, the symbol ‘]2[‘ indicates the 0-dimensional,
elementary values comprising the 1-dimensional arrays.

Figure 6 shows how to represent some examples of
meshes. When the network’s shape offers the possibility of
being described with a noticeable characteristic, listing the
node tags and this characteristic suffice for the description.
Thus, the network a) in Figure 6 can be seen as either a
3-element clique or a 3-element ring. Therefore, it can be
described as <Cq>{A]0[B]0[C} or <Rn>{A]0[B]0[C} where
<Cq> and <Rn> are the corresponding net characteristic
topology tags and A, B and C are the values representing
some property at each node. Networks c) and d) are a five-
element ring and a five-element star respectively. Hence their
descriptions include the tags <Rn> and <St>. The net e) can
be seen as the superposition of the ring and the star of cases
c) and d), and its description can be expressed by shifting the

Struct.
Name

Struct.
Dims. Structure Depiction Autonomous Representation

Scalar 0 A A
Tuple 1 A,B A]0[B

Vector 1 G, F, D, S, A G]0[F]0[D]0[S]0[A
Matrix 2

Matrix 3

Tree

Multidimensional structure representation

G, F, D, S, A
1, 2, 3, 4, 5
v, w, x, y, z

G]1[F]1[D]1[S]1[A]0[
1]1[2]1[3]1[4]1[5]0[v]1[w]1[
x]1[y]1[z

A, B, C
D, E, F
K, L, M

o, p, q
r, s, t

u, v, w

X, Y, Z
a, b, c
d, d, d

A]2[B]2[C]1[D]2[E]2[F]1[K]2[
L]2[M]0[o]2[p]2[q]1[r]2[s]2[
t]1[u]2[v]2[w]0[X]2[Y]2[Z]1[
a]2[b]2[c]1[d]2[d]2[d

s

A

p w

X a b c

A]0[p]1[s]2[X]1[w]2[a]2[b]2[c>1
<2

Figure 5: Examples of multidimensional structures according to the Autonomous Data Representation.

www.innovationinfo.org

J Multidis Res Rev 2019 41

dimension indexes and using the dimensional index ‘]0[‘to
join them in a unique expression. Similarly, in case g) the
dimensional index ‘]0[‘is used to join two networks through
elements D and K, and forming a description of the whole
structure. The linking elements are indicated with the tag
‘<*>’.

Graphic resource management
Recently, a graphical representation of data has become

a very active field of research. The construction of abstract
graphs to model the behavior of the systems also gets
great attention. The capacity of current computers allows
the development of techniques to represent animated
multidimensional graphs, referring to phenomena that exist
in multidimensional spaces. Thus, using bubbles, instead
of points, with diameters and variable colors, and other
geometric properties, it is possible to go beyond the two
dimensions in graphics that in the strict sense, remain 2D.

The graphic representation is a language in itself.
The graphing capabilities should be able to adjust to the
requirements of each particular situation to maximize the
amount of information transferred to the observer. One way
to equip the system with these possibilities is to allow the

association of the properties of the agents with the graphic
properties of the graphic elements used. We can cite the
diagrams of Gapminder [11] or the Python Open Source
Graphing Library, that use bubbles to represent agents or
entities. The diameters of the bubbles are associated with
an extensive-variable of the entity; population, volume,
and size are typical cases of extensive-variables which are
appropriately represented by marker or bubble sizes.

Unlike the graphing modules of other systems, MoNet
incorporates the use of graphical properties as a philosophy
that manages those graphical resources. The intensive
use of this philosophy allows the representation of many
dimensions in the 2D chart. The components of each
primary color, the shape and the thickness of the edge of the
bubbles, the degree of fill-opacity and the edge are some of
the graphic properties that can be associated with the value
of the attributes of each agent represented in the graph.
Figure 7 shows one of the reticles dedicated to this aspect
of the system. MoNet offers these capabilities by applying
the concept of Graphics Resource Management. A panel
consisting of a grid with the graphical resource parameters
and their possible values. This approach allows connecting
these resources to the selected model parameters without

Structure Depiction Autonomous Representation

<Rn>{A]0[B]0[C} or
<Cq>{A]0[B]0[C}

<Cq>{A]0[B]0[C]0[D}

<Rn>{A]0[B]0[D]0[C}
Notice the order has meaning; A i s
not in di rect contact with D.

<St>{F]0[A]1[B]1[C]1[D]1[E}
Notice F i s in a jerarquica l different
poss ition from other elements .

<St>{F]0[A]1[B]1[C]1[D]1[E} +
<Rn>{A]0[B]0[C]0[D]0[E} or
<St>{F]1[A]2[B]2[C]2[D]2[E}]0[<Rn>{A]
1[B]1[C]1[D]1[E}

<St>{F]1[A]2[B]2[C]2[D]2[E}]0[A]1[E]1[
D]1[C]1[B

<St>{F]2[A]3[B]3[C]3[D]3[E}]1[A]2[E]2[
<*>D]2[C]2[B]0[
<Rn>{G]1[H]1[J]1[<*>K}

g) 5-Elem. F.Centered
Star Plus an
incomplete 5-E Ring
plus a 4-Element
Ring connected by
elements D and K

f) 5-Elem. F.Centered
Star Plus an
incomplete 5-E Ring

e) 5-Elem. F.Centered
Star Plus a 5-E Ring

a) 3-Element Cl ique
or 3-E Ring

Network structure representation

Network Name

b) 4-Element Cl ique

c) 4-Element Ring

d) 5-Element F
Centered Star

B C

A
B C

D

A
B C

D

A

AB E

D
FC

AB E

D
F

C

AB E

D
F

C

A
B

E

D

F
C

H
G

J
K

Figure 6: Examples of network synthetic representation with the Autonomous Data Representation.

www.innovationinfo.org

J Multidis Res Rev 2019 42

the need for programming by setting the attribute’s name
and linking its value to a graphical property. Figure 7
illustrates how this works. The value of the bubble ‘Border
Opacity’ is fixed in the column ‘Value.STRN’ setting it to
250, the position of the bubble’s coordinates X and Y adopt
the values of attributes ‘<X Fractal.FLOT>’ and ‘<Y Fractal.
FLOT>’ correspondingly.

This type of connection between values and graphical
properties is a common capacity for the graph modules of
most systems. However, in MoNet’s procedures, a graphic
property value may also be defined by an expression or a
function. The ‘Node Size’, as is exemplified in Figure 7, may
be a function of an attribute, the ‘<Complexity.FLOT>’ in this
case, because its value is specified as ‘= 4 * <Complexity.
FLOT> ^0.5’. Thus, in Monet this feature which acts as a
flexible ‘hinge’ between the model and the represented
graph bringing the possibility of creating elaborated graphs
even for those users,who are not programmers or the ones
who are reluctant to code.

Applications and Results
The specific needs for a multi-scale system modeler

have led us to develop MoNet: a locally conceived computer
system that we have developed to perform our experiments.
MoNet has evolved for about six years now. During this
period MoNet has been used as the basis to perform several
experiments, including the symbolic analysis of languages
[12–14], Information-structure analysis [8], musical genres
comparison [15], and institutions fractal-representation
[16]. After conceiving the idea and building an initial
software structure, the construction of the system has
been guided to respond to those needs that appear thru the
development of each experiment, always sticking to some
basic rules of programming, such as the use of data abstract
representations to allow for its universal application.
Therefore, it is fair to accept these experiments have
performed as a crucial role in the development of MoNet,

establishing a mutual relationship between the modeling
platform and the experiments.

MoNet’s graphic user interface
MoNet records all agents comprising a system in related

but independent files. Each agent’s description includes its
attributes and the contained sub-agents’ descriptions. The
agents ‘know’ its location within the file-structure network
as well as how it relates to other agents. This agent-formed
system description goes from an upper-level agent, which
may be considered the root, down to a succession of branches
of agents progressively described with inner agents and
more detailed attributes, until the formed description tree
reaches a level where the agents do not contain more in-
depth agents and are described by attribute values only.

This treelike structure is appropriate to resemble the
way system- elements self-organize and function In nature,
thus it successfully captures the hierarchical relationship
among the system elements. MoNet allows navigating thru
the system’s structure by showing each agent component in
a grid where contained sub-agents are described in a row of
cells. The cells in an agent-row may, or may not, show the
value of an attribute, organized in columns. There are ways
to indicate whether or not the attribute is applied to the
specific sub-agent. Figure 3 illustrates how different colors
are used to indicate the scope of an attribute.

A cell containing an attribute consisting of a link to
another agent can be seen at an inner scale. The agent
description’s target may show up in another window
sharing the same interface anatomy, but applied to another
observation scale and may focus a different aspect of the
system. These features enable the interface to represent
agents of a variety of natures in the same grid. Its capacity
to grow and to extend the boundaries of the system’s
description is practically unlimited. MoNet’s interface and
file-structure serve to keep organized large sets of systems
being modeled, thus allowing for the proper administration

Figure 7. MoNet Graphics Resource Management Panel.

www.innovationinfo.org

J Multidis Res Rev 2019 43

of each system’s model at the scale level selected. MoNet has
been the basis to accomplish studies of ‘families’ of highly
complex descriptions of systems [15,16].

Pseudo-languages to handle and organize
unstructured data

Localizer, the script language developed, together
with the autonomous representation of data has allowed
the control of the complex data structure that serves each
computer model. In order to understand the dimension of
the difficulty that the program faces, the requirements of
this program can be compared with those of a spreadsheet.
In a spreadsheet, the models are described by reference
to the position of each element in a grid. These reticular
structures can grow up to three dimensions, which make
up the so-called ‘workbooks.’ In the present case, the data
structure may have any shape; it can be reticular, such as
spreadsheets, or trees representing a particular hierarchy
between data, or meshes, which due to their low required
regularity, have the capacity to represent even more
complex situations. Logically, the flexibility of being able to
represent any hierarchical structure, or system of relations
through the form of the network of data files, will be paid
at the time when the system needs to locate a piece of data,
which comparatively would be harder in a mesh than when
using orthogonal coordinates; as would be the case in the
spreadsheets. A language must be available that allows
the localization of data in that flexible structure, allowing
the natural structure of any system to be appropriately
represented by the data structure built at different levels of
detail.

Capabilities for rich visualization tools and multiple
scale representation

The philosophy of managing graphics resources to
increase the readability of two-dimensional graphics has

allowed for the representation of seven or even more
dimensions in 2D graphics. The graphical resources used
include the positions on the X and Y axes (angle and radius
for polar coordinates) and various graphical properties of
the bubbles that represent each agent within the system
such as diameter, shape, the thickness of the edge line, Fill
opacity, edge opacity, and component of each primary color.
The visualization of model attributes by means of graphical
representation properties has been widely used during
the last decade. Pioneering this style of graphing was Hans
Rosling with his son Ola Rosling and his daughter-in-law Anna
Rosling Ronnlund. They built beautifully animated graphs to
show worldwide statistics and made them available through
a web site cited in [11]. What is proposed here extends this
concept to all available graphic properties to integrate such
graphic capabilities to the numerical computer modeler to
obtain more than just a visualization tool, but a complex-
system modeler that uses visualization as one of its means
to depict experimental results.

As a sample of the results obtainable with these features,
we refer to two studies. The first one is the engineering
thesis by S. Pizzo [16], where she describes the hierarchical
organization of different sized institutions. Figure 8 shows
fractals associated with the organizational structures of a
Venezuelan TV channel and the Universidad Simón Bolívar,
also in Venezuela. The Appendix includes a brief explanation
of the parameters used to form these fractals.

The second is a study by Febres and K. Jaffe [15] where
they ‘measured’ the affinity music pieces according to genres,
composers, geographical regions, and epochs. Figure 9
illustrates the result of graphing academic music entropy
versus symbol diversity. We used the data set created for the
previous paper by Febres and Jaffe [15] to create the graph
shown in Figure 9. In the previous study, we encountered
entropy and symbolic diversity patterns in music of

Figure 8: The representation of two organizational structures. Both representations offer fractal views of the structure of two
different institutions. These fractal representations include measures of organizational complexity (bubble diameter), and work
orientation towards production (green), administrative (red), and service (blue) tasks. Figure 8a shows the structure corresponding to
a Venezuelan TV channel and Figure 8b shows the structure of the Universidad Simon Bolivar. Both representations are fractallike
diagrams which allow for a quick visual evaluation of the relative order for both institutions. Presented here with permission of
Stefhani Pizzo [16].

www.innovationinfo.org

J Multidis Res Rev 2019 44

different genres. Now, with the graph of Figure 9, it can be
seen a minimum entropy located at about a symbol specific
diversity of 0.015. The bubble thickness also indicates this
minimum entropy exists when music is grouped at the scale
of composers. We think this observation is possible thanks
to the integration of the graphical representation with the
coexistence of several scales in the same graph. A version of
this Figure, showing tags indicating the name of the agent
each bubble belongs to, is included in the Appendix.

MoNet’s data structure and its capacity for evolution
The organization of data in a hierarchical way in a tree-

shaped structure offers advantages over its orthogonal
counterpart such as tables in conventional databases. The
tree structure organizes the agents, each formed by a data
file, into nested directories according to the hierarchical
order considered with a dominant nature in the modeled
system. In most recognizable systems, this hierarchical
organization leads to the recognition of subclasses of agents
that populate the model with numbers distributed in an
approximated logarithmic way (or exponential, depending
on the point of view).

This feature gives the data structure the capability
of growing into further detail for those selected entities
for which this data-complexity increase is justified. On
the contrary, for conventional databases, increasing the
description detail of an entity would require an additional
table, where space for all instances of the entity must be
reserved, despite the real need for the detailed description of
only some of the instances. This difference provides the tree-
data structure with the advantage of being more efficient in
terms of reducing data redundancy, and more importantly,
the tree-data structure offers a much more flexible structure
allowing for faster and limited risk experimentation when
expanding the details represented in the data register.

Discussion
Flexibility vs. data structure

The construction of computer programs based on
structured data has long been the commonly accepted way
of approaching the problem of designing systems. The use of
tables to represent object properties has become a capable
vehicle for organizing objects represented in the computer
model and the information system. Techniques to represent
relationships between different types of entities have been
a significant advance in the modeling of complex systems
during the 1990s.

Even before their splendor time, when CASE Tools
dominated the Information Systems project activities, the
limitations of this system design technique were already
identified. In a study published in 1988, Charles Martin [17]
mentioned some limitations of CASE Tools he considered
necessary, as methodology constraints, administration
difficulties, documentation inadequacies, and graphic-artist
requirement. Leaving this reference without additional
comment lacks fairness with CASE tools. Case Tools were
perhaps the single most relevant information system design
during the early ’90s. At that time, the still limited computer
capacity and the early operative network dominance did not
allow a more extensive impact of CASE Tools.

Today, when working with complex systems became
crucial to most information systems, platforms for
computerized modeling suffer from the constraints imposed
by the rigidity of table-based architectures. The tables
make it difficult to represent hierarchies and relations of
belonging.

Modeling systems are intended to represent an
environment authentically. If this environment cannot
be adequately described with a list of attributes and their
values, such a description would not correspond to a system

Figure 9: Entropy vs. Specific Symbolic Diversity of music. Representation of pieces of MIDI academic music. The chart shows normalized
entropy (vertical axis: entropy computed using logarithms at the base equal to the symbolic diversity) and the specific symbolic diversity
(horizontal axis: number of different symbols divided by the total number of symbols) for various scales of observation: periods or types of
music (shown with bubbles with the thickest border), composers (shown with bubbles with medium thickness border), pieces and fragments
of pieces (shown with bubbles with the thinnest border). The area of the bubbles is proportional to the length of music information included
as data for this graph. See Figure A3 in the Appendix for this graph with the bubbles labeled.

www.innovationinfo.org

J Multidis Res Rev 2019 45

with dynamics and evolution. It is more appropriate to
describe the system as the collection of all agents comprising
the system’s scale level. Expressing the relationships among
agents result in a better depiction. If we describe each agent
through the agents comprising it at the immediately smaller
scale level and continue this process until reaching the
most detailed description, we obtain a depicting structure
that better resembles the modeled system’s behavior. A
description structure like this one can even grow and shrink
at every scale, thus being closer to the objective of resembling
the “life” activity of the real system. Conventional databases
accomplish managing attributes but lack the flexibility to
adapt its shape to represent the system’s structure evolution.
Additionally, the hierarchically organized data structures
are based on classification trees that store data following
their levels of detail according to the observation scale —
making us more effective in the possibility of implementing
distributed modeling and parallel data processing.

Development speed versus adaptability
It is often attempted to measure the size and power

of programs by specifying their number of routines or
instructions. These dimensions refer more to the work and
the cost of designing and coding a computerized program
than to the actual performance of the final result. In fact, if we
had to bet on the better of the two programs, we would better
regard rely upon the lighter more than on, the heavier. There
are more appropriate measures to evaluate the quality of
software segments. Some of these measures are well known.
One of them is the concept of Computational Complexity,
which refers to the estimation of the resources required by
an algorithm to achieve a result. The evaluated resources
are typically time and memory space. The problem is that
Computational Complexity evaluates the performance of an
algorithm, while today, in most cases, a system consists of
many ‘coexisting’ algorithms in an environment full of other
components, and where the effectiveness of the algorithms
does not necessarily define the effectiveness of the whole
software.

As for the search and read times of the file associated
with an agent, conventional databases certainly allow search
times much lower than the crawling required for locating
an agent in a directory and file network. However, the
algorithms of search in tables require the implementation of
indexes that ‘hide’ much fragility in the databases and that
require significant efforts of maintenance.

MoNet’s network-like data store and the pseudo
languages needed to control and use the data were developed
independently. Recently we came across the relatively new
NoSQL databases. MoNet’s works with a file-data structure
very similar to the NoSQL database structures. Thus, the
same weaknesses as the need to develop a query language,
difficulty to backup data and low standardization, should be
expected. However, it should be mention after these issues
are overcome, there is a great deal of independence and
adaptability which justify the effort, especially at the initial
stages of the developing process. Once the system is working
and allowing its application to real use, the system itself,
frequently indicates what the good design decisions are.

In an environment of research and productivity
where performance is more closely associated with the
speed with which the computer platform conforms to the
particular requirements of an experiment, it is convenient
to adopt a data structure capable of assimilating objects of
a novel nature without a major struggle in the process of
development. Having an own interpreted script-language,
capable of incorporating new requirements, while keeping
previously established criteria and syntax elements, or on
the contrary, incorporating new criteria and making the
syntax to evolve, offers important advantages in this regard.

The scenario of modelling complex systems
Perhaps the most highlighting capability resulting from

MoNet’s architecture is the possibility for modeling large
sets or families of complex systems, and to represent aspects
of them to form complete landscapes of systems, and to offer
the possibility of visually enhance our empirical sense of the
behavior of the complex systems.

Conclusion
The representation of complex systems based on

independent file structures and without databases seems
to be the way that provides the necessary flexibility
to model today’s systems, whose structure changes in
dynamics that conventional databases are unable to
pursue. MoNet’s development initiated in 2011. The
experience with MoNet as a lasting modeling platform,
confirms this systems’ architecture is viable and that it
offers effective representations of the phenomenon of
the emergence of information that occurs with changes
in the scale of observation. The development of MoNet
has not been absent from difficulties and harsh technical
problems. Storing model’s data in a similar way to the
NoSQL databases, imposes the need for developing pseudo
functional languages, data structures, searching algorithms
and filters, graphic interfaces and even novel strategies for
input data. When considering starting the development of
a system, these barriers may bias the decisions in favor of
predeveloped tools and make the ‘illusory’ decision to solve
problems by incorporating them into the system. Possibly
the development conditions of MoNet, an environment
where MoNet has served to describe, control and organize
scientific simulations that work as experiments, have made
feasible to apply the best decision of implementation and
not necessarily the fastest. This experience shows the high
adaptability that comes along with these developing criteria,
is worth it.

When the perspective on software design is not dominated
by a commercial character, the techniques that should be
adopted are those that offer possibilities of growth and
adaptation to the increasingly frequent changes of today’s
environment. These results suggest that software treatment
as a language capable of adapting to the requirements and
evolve towards high levels of effectiveness, offers advantages
in the medium term, compensating for the costs of the slow
start that characterize this style of programming.

www.innovationinfo.org

J Multidis Res Rev 2019 46

Supplementary Materials
Graphs of previous studies using MoNet are included

in the Appendix. Full scale and working graphs are
available at http://gfebres.net (click on downloads and
downloadMonet.4) [18].

Funding
The current version of MoNet has been entirely and

exclusively developed by Gerardo L. Febres, No external
funding have been received to support this development or
this document.
References

1. Heylighen F (1991) Modelling Emergence. World Futur J Gen Evol 31:
89–104.

2. Geoffrion A (1987) An Introduction To Structured Modeling. Manage Sci
33: 547–588.

3. Geoffrion A (1992) The SML Language for Structured Modeling: Levels1
and 2. Oper Res 40: 38–57.

4. Makowski M (2005) A structured modeling technology. Eur J Oper Res
166: 615–648.

5. Dou W, Liu S (2016) Topic- and Time-Oriented Visual Text Analysis.
IEEE Comput Graph Appl 36: 6–9.

6. Choo J, Liu S (2018) Visual Analytics for Explainable Deep Learning. IEEE

Comput Graph Appl. IEEE 38: 84–92.

7. Lopez Ruiz R, Mancini H, Calbet X (1995) Statistical Measure of
Complexity. Phys Lett A 209: 321–326.

8. Bar-Yam Y (2004) Multiscale Complexity/Entropy. Adv Complex Syst
07: 47–63.

9. Gell-mann M (1995) What is Complexity? Complexity 1: 16-19.

10. Febres G (2018) A Proposal about the Meaning of Scale, Scope and
Resolution in the Context of the Information Interpretation Process.
Axioms 7: 11.

11. Rosling H, Rosling O, Rosling A. Gapminder [Internet]. [cited 16 Oct
2016]

12. Febres G, Jaffe K, Gershenson C (2015) Complexity measurement of
natural and artificial languages. Complexity 20: 429–453.

13. Febres G, Jaffe K (2017) Quantifying structure differences in literature
using symbolic diversity and entropy criteria. J Quant Linguist 24: 16-53.

14. Febres G, Jaffe K (2016) Calculating entropy at different scales among
diverse communication systems. Complexity 21: 330–353.

15. Febres G, Jaffe K (2017) Music viewed by its Entropy content: A novel
window for comparative analysis. PLoS One 12: e0185757.

16. Pizzo S (2018) Método Descriptivo de Estructuras Organizacionales
Basado en Representaciones Simbólicas de Sistemas Complejos.
Universidad Simón Bolívar.

17. Martin CF (1988) Second Generation Case Tools: A Challenge to Vendors.
IEEE 5: 45–49.

18. Febres GL. Gerardo Luis Febres [Internet]. 2019 [cited 9 Mar 2019].

Citation: Febres LB (2019) Basis to Develop a Platform for Multiple-Scale Complex Systems Modeling and Visualization: Monet. J Multidis Res Rev Vol: 1, Issu:
2 (35-46).

https://doi.org/10.1080/02604027.1991.9972256
https://doi.org/10.1080/02604027.1991.9972256
https://doi.org/10.1287/mnsc.33.5.547
https://doi.org/10.1287/mnsc.33.5.547
https://doi.org/10.1287/opre.40.1.38
https://doi.org/10.1287/opre.40.1.38
https://doi.org/10.1016/j.ejor.2004.03.037
https://doi.org/10.1016/j.ejor.2004.03.037
https://doi.org/10.1109/MCG.2016.73
https://doi.org/10.1109/MCG.2016.73
https://doi.org/10.1109/MCG.2018.042731661
https://doi.org/10.1109/MCG.2018.042731661
https://doi.org/10.1016/0375-9601(95)00867-5
https://doi.org/10.1016/0375-9601(95)00867-5
https://doi.org/10.1142/S0219525904000068
https://doi.org/10.1142/S0219525904000068
https://doi.org/10.1002/cplx.6130010105
https://doi.org/10.3390/axioms7010011
https://doi.org/10.3390/axioms7010011
https://doi.org/10.3390/axioms7010011
https://www.gapminder.org/
https://www.gapminder.org/
https://doi.org/10.1002/cplx.21529
https://doi.org/10.1002/cplx.21529
https://doi.org/10.1080/09296174.2016.1169847
https://doi.org/10.1080/09296174.2016.1169847
https://doi.org/10.1002/cplx.21746
https://doi.org/10.1002/cplx.21746
https://doi.org/10.1371/journal.pone.0185757
https://doi.org/10.1371/journal.pone.0185757
https://www.innovationinfo.org/journal-of-multidisciplinary-research-and-reviews/articles_inpress
https://www.innovationinfo.org/journal-of-multidisciplinary-research-and-reviews/articles_inpress
https://www.innovationinfo.org/journal-of-multidisciplinary-research-and-reviews/articles_inpress
https://doi.org/10.1109/52.2010
https://doi.org/10.1109/52.2010
https://www.gfebres.net

	Title
	Article Information

