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Abstract
The primordial aim of this paper is to address the issue on the 

development of a single, universalized equation to describe all wave 
functions of quantum systems in motion. That is, the idea of being able 
to explain their all of their possible evolutions related to the possible 
routes that these could potentially follow. As such, we will start off by 
analyzing a particular case of quantum wave interference, which is based 
on the notion of two probability waves –generated by a superposition 
of possible paths-that interact with each other due to a Mach-Zehnder-
like interferometer. Although this certainly seems like a very particular 
experience, as this paper develops, we will see how it can be generalized 
in order to explain a vast number of phenomena. The importance and 
transcendence of the content found below hence relies on the idea that 
it provides an alternative method to evaluate quantum evolutions when 
wave functions interferences are implied. Overall, this is aimed at being 
a contribution that enrichens and polishes our understanding of the 
area, and that facilitates the process of tedious calculations related to 
these matters.

Introduction to the First Experiment
Imagine the following scenario: A regular laser, a prism and a 

projection screen have been placed and lined up over a table. The position 
of the laser has been arranged in such way that the path described by the 
light it emits is divided into two equal parts once it reaches the prism: one 
of them passes through the prism and the other one continues its regular 
route through the air. What we would see projected on the screen would 
be an interference pattern. As we know, this is a projection formed after 
two or more waves interact or interfere. Generically speaking, it looks 
like a large, horizontal strip made up of several, smaller vertical strips. 

Interference patterns can be the result of many different 
arrangements, but they can all be reduced to the simple idea of waves 
interacting and, later on, crashing with a barrier called projection 
screen. In the comparatively large world we live in, only a much reduced 
number of physical systems can have a wave-like behavior. Liquids and 
some fluids like water, for example, have surfaces where waves can be 
easily formed; however, these systems are not behaving as waves by 
themselves: Only their most outer layers are doing so. Classical light, on 
the other hand, does behave like a wave in a considerable number of 
cases. It is for that reason, intuitively, that we mentioned previously that 
it had the capacity to generate interference patterns. 

In the smallest scales possible, nevertheless, this idea of a reduced 
number of wave-like behaviors becomes radically different. Once we have 
reached the domain of quantum mechanics, what we see is that particles 
start behaving like waves. Although this certainly counterintuitive idea, 
it becomes the very essence of nature in the quantum world. 
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In this paper, for instance, what we are going to do become 
evident at this point: We will translate the first experience 
that I mentioned into a quantum scale and describe it using 
the laws of quantum physics. The underlying idea behind 
all this is very simple: The laser that we initially had will 
become-hypothetically and in our mental experiment-an 
individual source of photons on a much smaller scale.

Once we have managed to perform this translation and 
deduced laws from the previously proposed scenario, we 
will generalize these conditions and universalize these laws. 
After we have achieved this goal, it will become evident that 
our initial supposition can be used in order to describe a vast 
number of quantum phenomena.

Generalities (Quantization of Experiment)
As it has just been mentioned, our first assumption is 

that the laser that was mentioned has become an individual 
source of photons. In principle, this-added to the change of 
scales-is all that it takes to quantize our initial experience. 

Now, the source must have an area from which photons are 
emitted. If we try to portray this notion, we would possibly 
get an apparatus similar to this one (Figure 1). 

Evidently, this means that any photon emitted from that 
device could come from any point contained within the 
circular area. Now, let’s make another supposition: This area 
is directed to a prism, and the apparatus is placed in such a 
way that the projection of half of the area passes through the 
prism and the other one through the external mean. If we 
placed a detector in the point where the individual photons 
can take either possible route, we would measure that 
there is a 50-50 chance that the emitted photon will pass 
through the mean or through the prism. Holistically, so far, 
our experiment can be visualized with the following image 
(Figure 2).

However, assuming that there was not a way to detect 
which path they took, the individual photons would find 
themselves in a superposition of two possible states 
regarding the routes they could potentially take: thought 
the prism or through the mean. Overall, we would have 
two waves of possibility that would be out of phase, as the 
fact that one of them is a different mean implies that it has 
reduced its speed. 

As a result, we would get an interference pattern. If we 
took into account the classical version of this experience, the 
resultant pattern would look approximately like this.

It is important to notice two things regarding Figure 
3. First of all, it is a very general approximation of what 
is truly seen in the experience. Secondly, it is clear that 
the quantum and classical worlds are different, although 
the experience remains unchanged in principle (our 
hypothetical experiment is nothing but the quantum analogy 
of the classical experience). As such, Figure 3 is not a perfect 
approximation of what would be measured in a quantum 
domain.

Mathematizing the Experiment’s Quantum 
Version 

In order to generalize laws regarding our experience, it 
is imperative to, first of all, create an initial set of laws and 
equations. To do this, we will first create a graph and denote 
the points that will, later on, allow us to take the first step in 
our attempt to translate the experiment into a mathematical 
language. Figure 4 illustrates perfectly the notation that we 
will be using in this case. 

From the graph, we can describe the sum of the routes 
taken by an individual photon that goes from the source  
to an undetermined point contained within the projection 
screen . This algebraic description is given by

1 2
| | |x x xT

P S P S P S= + 			              (1)

Where

1
| | | | | | |x xP S P P B B P A A P S= 		              (2)

And

2
| | | | | | |x xP S P P B B Q A A P S= 		  (3)

There is, however, a problem with this form of the 
equation: If we aim to operate numeric values that enable us 

 

 
Figure 1: Area of photon.

Figure 2: Photon emission.

 

Figure 3: Interference pattern.
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to calculate the probability that the analyzed system has of 
landing at xP , we need an equation written in the language 
of complex numbers. This problem can be easily resolved if 
we assume the following (Table 1).

If we took this for granted, equation 1 would be equal to

( ) ( ) ( )
1

q pi iN c e eα β α βθ +ϕ +ϕ θ +ϕ +ϕ= α +α 		             (4)

Finally, if we normalize equation 4, we get that
2 2

1 2 (1 cos ) N = α + χ 			                (5)

As α is nothing but the norm a of complex number, we 
can also write 

2 2
1 12 (1 cos )N C= + χ 			                    (6)

Where

 q pt t−χ = ω ω 				                (7)

C1= αβ					                 (8)

and 
2

N  is the probability of a photon landing in a point 
x contained within the projection screen. 

Mathematizing a variant of the previous case 
If we intend to generalize our experience, the first thing 

that we have to do is to introduce a slight variation on it. 
Because of convenience-related issues, this change will 
be an additional prism. Keep in mind that, for the sake of 
our analysis, we will assume that the prisms involved are 
not identical. If we applied the same logic used on 1.1, our 
diagram would look like this (Figure 5). 

This would define the following, possible routes:

2 2 2 2 1 1 1 11
| | | | | | | | | | |x xP S P P B B Q A A P B B Q A A P S=   (9)

2 2 2 2 1 1 1 12
| | | | | | | | | | |x xP S P P B B P A A P B B P A A P S=  10)

2 2 2 2 1 1 1 13
| | | | | | | | | | |x xP S P P B B Q A A P B B P A A P S= (11)

and 
2 2 2 2 1 1 1 14

| | | | | | | | | | |x xP S P P B B P A A P B B Q A A P S=    (12)

Overall, the combination of these equations would be 
given by

4

1

| |x xT n
n

P S P S
=

=∑ 			             (13)

which is the same as writing:
2 2 2 2 1 1 1 1

2 2 2 2 1 1 1 1

2 2 2 2 1 1 1 1

2 2 2 2 1 1 1 1

| | | | | | | | | | |

| | | | | | | | | |

| | | | | | | | | |

| | | | | | | | | |

x xT

x

x

x

P S P P B B Q A A P B B Q A A P S

P P B B P A A P B B P A A P S

P P B B Q A A P B B P A A P S

P P B B P A A P B B Q A A P S

= +

+

+
(14)

Again, we have to translate this new equation into a 
numerical notation. In order to do this, we will take for 
granted Table 2.

With this in mind, we can write the new equation 

( ) 2 1 2 1 2 1 2 1( ) ( ) ( ) ( )
2

q q p p q p p qi i i iN c e e e eε+θ +θ ε+θ +θ ε+θ +θ ε+θ +θ= αβ αβ +αβ +αβ     (15)

After normalizing equation 15, we get that
( )2 2

2 2 1 2 3 4 5 62 2 cos cos cos cos cos cosN C= + χ + χ + χ + χ + χ + χ     (16)
which is the same as 

62 2
2 2

1

2  2 cos n
n

N C
=

 
= + χ 

 
∑ 	 	           (17)

The values at equations 16 & 17 are defined by the Table 3.

 

 

Figure 4: Numerical expansion of photon emission.

|x T
P S

=

N(c)

| |A P S ie αϕα

| |xP P B ie βϕ

| |B Q A qie θ = qi te ω

| |B P A pie θ = pi te ω

Table 1: Solution for language of complex number.

Table 2: Numerical notation.

|x T
P S

=

=

N(c)2

1| |A P S ie αϕα

2 1| |A P B ie βϕβ

2| |xP P B ie γϕ

2 2| |B Q A 2qie θ = 2qi te ω

2 2| |B P A 2pie θ = 2pi te ω

1 1| |B Q A 1qie θ = 1qi te ω

1 1| |B P A 1pie θ = 1pi te ω

𝜀 + +α β γϕ ϕ ϕ
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Spatial generalization of these two experiences 
After analyzing the previous cases, it becomes evident 

that the vast majority of the terms implied in the equations 
depends on the number of prisms that are used. Overall, 
what we see is that, for a quantity of prisms, the following 
relation regarding the morphology of the resultant, 
normalized equation takes place:

2
22 2 1

1

2 2 cos
y

C
y

y y n
n

N C −

=

 
 = + χ
 
 

∑ 		            (18)

In this equation, N is the norm of a complex number, 
whereas Cy is a real number and the product of Z complex 
numbers’ norms. It is important to take into account that 

Z=y						                (19)

If the reader performs the procedure that resulted in 
equation 18, it will become evident that solving 

2
2

2 !
2!(2 2)!

y
y

yC −
−

-is the same as 

Exp 1: 12 (2 1)y y− −
For instance, in a case where we have five prisms, the 
solution of equation 18 would be given by

52
22 2 5 1

5 5
1

2 2 cos
C

n
n

N C −

=

 
 = + χ
 
 

∑  		            (20)

which is the same as
4962 2

5 5
1

2 16 cos n
n

N C
=

 
= + χ 

 
∑

		            
(21)

Notice that equation 18 can also be used in the cases 
where there are not any prisms at all, as the solution for zero 
prisms would be

02
22 2 0 1

0 0
1

2 2 cos
C

n
n

N C −

=

 
 = + χ
 
 

∑
		             

(22)

which would equal 
2 2

0 0
12
2

N C  = + 
 

 			             (23

or 

( )2 2 2
0 0 01N C C= =

			             
(24)

Overall, this is, in principle, the same as the standard, 
normalized formula 

22
( )| Cl φφψ = 				              (25)

where ( )Cl φ  is the norm of the complex number associated 
with the state φ.

Recovering lost information 
If solely the previously exposed generalization is used in 

order to simplify the resolution of a case with x prisms, some 
information regarding the value of the angles implied in 
cosines of the experiment will be lost. Because of this reason, 

 Figure 5: Mathematizing a variant of photon landing within the
projection screen.

1 1 2χ = Σ −Σ 4 2 3χ = Σ −Σ 6 3 4χ = Σ −Σ

2 1 3χ = Σ −Σ 5 2 4χ = Σ −Σ

3 1 4χ = Σ −Σ

Table 4: Methodology in two prisms.

1Σ

=

2 1q qθ + θ

2Σ 2 1p pθ + θ

3Σ 2 1q pθ + θ

4Σ 2 1p qθ + θ

Table 5: Final resolution.

v

Table 3: Normalizing equations.

2
2N

=

2
|x T

P S
C2 α

1cosχ 2 1 2 1q q p pθ + θ −θ −θ

2cosχ 1 1q pθ −θ =
2 1 2 1q q q pθ + θ −θ −θ

3cosχ 2 2q pθ −θ =
2 1 2 1q q p qθ + θ −θ −θ

4cosχ 2 2p qθ −θ =
2 1 2 1p p q pθ + θ −θ −θ

5cosχ 1 1p qθ −θ =
2 1 2 1p p p qθ + θ −θ −θ

6cosχ 2 1 2 1q p p qθ + θ −θ −θ
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now we will study a method that allows us to recover this 
information. 

The first step is to draw the initial graph. Then, it is 
imperative to name the relevant points found within it, just 
as it was done at 1.1 and 1.2. Notice that it is essential to 
copy the cases found in section 1 (1.1 & 1.2) as diligently as 
possible.

Once the algebraic values have been defined, the next 
step is to add all the angles contained within each individual 
complex number, as in the examples shown below:

1a b cε + θ + θ + θ = Σ 			             (26)

2d e fε + θ + θ + θ = Σ 			             (27)

3g h iε + θ + θ + θ = Σ 			              (28)

This will give us a set of groups of angles, each one of 
them denoted by xΣ , where x equals the number of the group. 
Notice that the total number of groups ( nΣ ) is defined by

2ynΣ = 					               (29)

If  is defined as the addition of the angles that are present 
in every complex number involved in the problem (in the 
case of 1.1, it would be equal to +α βϕ ϕ ; on the other hand, 
at 1.2 it would be ( + +α β γϕ ϕ ϕ ), the number of remaining 
angles- nθ -would be equivalent to 

2n yθ = 					               (30)

Assuming that we take these premises for granted, the 
recovery method becomes extremely simple: The first 
cosine’s angle will be the difference between the first group 
and the second one, the second angle related to a cosine will 
be the difference between the first group and the third one, 
etc. Once it is impossible to proceed by taking the first group 
as the first term in the subtraction, the second one will take 
its place.

Notice that, once we reach the point in which the first 
term in the subtraction is the second group, the subtractions 
are defined as the difference between the second group and 
the following ones. We do not take any previous group into 
account. This logic also applies to the next shifts regarding 
which group occupies the position of the first term in the 
subtraction. 

For instance, in a case where there are two prisms, our 
methodology (once it has been finished) would look like this 
(Table 4).

Let’s take into account that, according to our resolution 
(Table 5).

Overall generalization 
If we take a look at the analysis at 2.1, it becomes evident 

that equation 18 is universal, in the sense that it can be 
applied to any amount of prisms and is even true when there 
are not any prisms at all. Now, it is important to remember 
the fact that we never truly defined the variables that we 
placed with an exact value. This freedom regarding the 
capacity to take any possible, defined value implies that 
our equations are not only applicable to prisms: They are 

applicable regardless of the mean that is used to generate 
the interference. It is just a matter of adjusting the precise 
values given to each variable of the equation.

As we mentioned previously, the equations that we 
have defined are also valid in cases where there aren’t any 
prisms. Subsequently, it is acceptable to say that they must 
apply to any case that aims to describe the route or possible 
routes taken by any quantum system. This is more properly 
described the probability that has a system ψ  located at 
Xa of landing in an undetermined point Xb. If we take into 
account this notation, it would be more accurate to rewrite 
equation 18 like this:

2
222 1

1

( )| ( ) 2 2 cos
y

C
y

b a y n
n

X X C −

=

 
 = + χ
 
 

∑ψ ψ        (31)

In order to finalize this generalization, let’s consider 
the fact that, overall, every single quantum state can be 
described by a wave function, not only the ones linked to 
the idea of displacement. This means that, given that, under 
a methodical perspective, there is no principle difference 
between describing a state linked to position and any other 
one (say, linked to the spin of an electron), equation 31 
could also be used to describe the evolution of any other 
state we desire to evaluate. In effect, the fact that we have 
been using prisms implies that we are also taking general 
evolutions into account, as these imply a change in the phase 
of wavelengths of systems. It all comes down to matter of 
changing the interpretation of our evaluation, in terms of the 
exposure to a certain evolution, from distance to time (e.g, 
the prisms exposed a system to an evolution for a distance 
x; now, the evolution will be defined by a time y, rather than 
a distance). 

Notice that this does not mean that we have to change 
our equations, as all it entails to make them suited to these 
more general mental experiments is to define in the setting 
of the experiments the values of our terms as reliant on 
time. In way, this has already been done, though, that is why 

i i te eθ ω= . Holistically speaking, we now see that equation 31 
is more accurate described as a the probability that has a 
system described by ψ  of collapsing in a state 'ψ . This 
would be written as: 

2
22 2 1

1

'| 2 2 cos
y

C
y

y n
n

C −

=

 
 = + χ
 
 

∑ψ ψ 	           (32)

Keep in mind that equation 32 is applicable and works 
if and only if the states of ψ  and their corresponding 
evolution can be described as an interference between them 
that is prolonged through a mean (regardless of its nature) 
or throughout time.

Schrödinger’s equation 
Schrödinger’s equation establishes that the evolution of 

any quantum system ψ evaluated at a time  is given by

 ( )  ( )dH t i t
dt

=


ψ ψ 			             (33)

Where H


 is the matrix that represents the evolution of 
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the system. As we can define all systems as the addition of all 
their possible states, 

1

0

I

n
n

a n
−

=

ψ = −∑ 				              (34)

where I equal the number of possible states of the system 
and an is a complex number-, we can expand equation 33 in 
order to get 

1

0

 ( ) ( )
I

n
n

dH t i a t n
dt

−

=

= ∑


ψ 			             (35)

With this in mind, we can create a set of equations that 
allows us to evaluate simultaneously the probability that 
has a system to land in a determined point of space and its 
Hamiltonian evolution using equations 32 & 35.

2
222 1

1

'| 2 2 cos
y

C
y

y n
n

C −

=

 
 = + χ
 
 

∑ψ ψ

1

0

 ( ) ( )
I

n
n

dH t i a t n
dt

−

=

= ∑


ψ

Set 1
The practicality of using this set relies on the fact that it 

allows the user to analyze in a parallel manner the probability 
that has a quantum system of landing at a specific point and 
what would be its evolution if it reached this point.

Moreover, the core difference between these two ways 
of analyzing quantum evolutions relies on grounds of 
practical convenience. When there is route a particle is to 
follow (implying thus multiple evolutions), it may be more 
convenient to opt for our generalization. However, when 
the base states of a system are left to evolve throughout a 
determined time span, it is more direct to apply Schrödinger’s 
equation.
Conclusion and Overall Summary 

 Holistically speaking, it is possible to generalize the 
evolution of quantum systems in motion and bounded to a 

determined set of enacted operations via the equation

2
222 1

1

'| 2 2 cos
y

C
y

y n
n

C −

=

 
 = + χ
 
 

∑ψ ψ

where y is the number of state-interference-inducing 
apparatuses.

This generalized formula is applicable as long as the 
evaluated quantum system is bounded to a displacement 
linked to a possible evolution due to an inference in the 
wave function describing its possible states involving a 
determined property [1-10].
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