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Abstract
In this study, cross section balancing and restoration of 2D seismic 

reflections acquired from the Dehui depression is utilized in defining the 
structural evolution of the identified stratigraphic units and to further 
detail out the inverted structures which had occurred as a result of fault 
reactivated inversion. Inversion which occurred in the Late Cretaceous 
had led to a region-wide extension and compression with re-occurring 
reactivation of pre-existing normal faults resulting in the formation of 
complex inverted structures. The evolution of the pre-existing normal 
faults had a significant controlling influence on the deposition of 
sediments which defined the depressions architecture, such that it had 
led to the formation of half-grabens. Reactivation of pre-existing normal 
faults had resulted in the inversion style being depicted as a moderate 
inversion. Displacement along the reactivated pre-existing normal faults 
had also led to shortening within the syn-rift succession sequence, 
resulting in the structural deformation being largely accommodated by 
asymmetrical fault-related folds.

Keywords: Dehui depression, Fault-related folds, Pre-existing normal 
faults, Reactivation, Shortening.

Introduction
Inverted structures have long been identified to be of utmost 

importance in establishing the structural evolution of sedimentary 
strata, such that they detail out the extent of structural deformation 
and transposition of rift-related strata which best serves as favorable 
structures for the trapping of hydrocarbon deposits.

From different geological locations, inverted structures have been 
recognized by various authors [1-5], which were quite distinctive of 
complex intra-continental basins [6-7]. Inverted structures have also 
been noted to exist in several basins of eastern China and the continental 
shelf of the South China Sea [8].

Although, the generally assertion is that inversion tectonic processes 
are often assumed to be as a result of simple fault reactivation, numerous 
studies have shown that inverted structures may depict geometries of 
complex nature due to pre-existing normal faults being either truncated 
or reactivated as younger faults [9-12].

Due to lateral stratigraphic variations formed as a result of 
displacement within normal faults, additional complex structural-
geological settings must be taken into consideration during the process 
of restoration of previously faulted continental margins [13].

Through the use of balanced and restored cross sections which 
has been widely acknowledged by oil and gas industries as a means 
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deformed terrains based on adding further common sense 
rules in the absence of detailed observations [21]. The use 
of balanced cross-sections has thus provided further insight 
to complex orogenic problems amongst recent authors have 
consistently reiterated that improved structural and geo-
mechanical modelling enriches the geological understanding 
to improve seismic interpretations [31-34]. Especially as 
it is effective in complex terrains where images are poorly 
reflected [21].

The construction of a balanced cross section through 
the use of a modeling software can be achieved by the 
use of simple primitives and interpolation-extrapolation 
techniques which are employed in the reconstruction of the 
subsurface eroded parts of structures [35]. Based on the 
kinematic algorithm of the software being used, the following 
assumptions are to be considered in the restoration of the 
cross sections.

•	 The horizon length of each bed running parallel to the 
reference surface should be preserved and the cross 
sectional area should remain unchanged.

•	 The initial geometry of each fault should remain unaltered 
throughout the process of deformation.

The 2D seismic data with the direction of NW – SE were 
obtained by Jilin oilfield branch of PetroChina Co. Ltd. 
By means of seismic interpretation and well log data, the 
various sequential stratigraphic units and the structural 
characteristics were outlined.

Time domain sections were converted into depth 
(meters) for each identified stratigraphic units based on 
extracted log data for which Time-Depth conversion graphs 
and equations (Figure 3) were produced for each seismic 
profile.

Ten depth-converted Northwest-Southeast oriented 
geological cross sections were sequentially balanced and 
restored by unfaulting and unfolding with the aid of 2D 
Move structural modeling software.

In order to attain a balanced 2D cross section, the cross 
sections were constructed parallel to the tectonic transport 
direction, of which both are perpendicular to the strike of 
the main geological structures.

The restorations were reconstructed in accordance to 
the reverse geomorphological growth sequence to obtain 
the pre-deformational geometry of the syn-rift stratigraphic 
formation and to suggest the kinematic evolution of the 
major faults.

The geometry and kinematic characteristic of the major 
faults and syn-rift stratigraphic units were measured and 
interpreted by means of fault inversion ratio and horizontal 
inversion ratio respectively. The fault inversion ratio is 
represented as the ratio of contractional to extensional 
displacement along a fault [36]. The horizontal inversion 
ratio represents the relative contractional versus extensional 
deformation. The horizontal inversion ratio represents the 
inversion degree of inverted structures or regions without 
any reactivated fault or with one or more reactivated faults 
and folding of the sedimentary sequences [5]. Taking into 
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Figure 1: Tectonic sketch map of Asia Continent [22-26].

 

Figure 2: Tectonic map of northeast China and adjacent regions [27].

of systematic exploration programs [14-20], along with 
improved reconstructed geometric structural models of 
faulted terrains, would aid in providing enhanced insight into 
terrains of expected rock fracturing or fabric formation that 
may compartmentalize subsurface fluid flows of importance 
to resource recovery [21]. 

The focus of this study is the Dehui depression which is 
best described as a complex sub-tectonic unit of the Songliao 
Basin (Figure 1 and 2) [22-27] with rift-related successions 
of strata which occurred as a result of late Mesozoic rifting 
and lithospheric thinning [28]. The rifted succession 
of the Dehui depression has thus so far exhibited high 
prospectiveness in the accumulation of hydrocarbon [29,30] 
and has yielded voluminous quantities of oil and gas owing to 
the architecture of its complex inverted structures. Episodic 
inversion had to some extent displaced and complicated the 
co-relating stratigraphic units within the depression.

In this study, the use of balanced and restored cross 
sections from recently acquired 2D seismic data will aid in 
defining the inversion tectonic evolution and analyze the 
geometry of inverted structures within the study area.

Methodology
Cross-section balancing has been accepted as a 

conceptual approach to aid the better understanding of 
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consideration inversion structures experiencing the same 
geological conditions, the more shortening a structure 
accommodates during inversion movements, the higher the 
horizontal inversion ratio, as well as the fault inversion ratio, 
provided the displacement within the fault accommodates 
the effect of shortening [5]. Shortening of the bed lengths 
was determined by comparing the balanced profile to the 
restored profile of each stratigraphic unit. Subsequent to the 
restoration of each stratigraphic unit, the entire section was 
restored by removing fault offset and unfolding in order to 
obtain a restored horizon.

Decompaction and restoration of unconformity were not 
considered in the restoration process, though both were 
perceived to be vital in achieving some amount of certainty 
in the reconstructed structures especially in areas with 
significant variation in the thickness of the deformed strata 
(Figure 4). 

Geological Setting
Structural setting 

The Dehui Depression is located in the southeastern 
uplifted region of the Songliao Basin (Figure 5), covering 
an estimated area of 4,053 km2, and is identified as a 
subtectonic unit [38]. The Dehui depression is characterized 
by a relatively high abundance of normal and transfer faults, 
and fault-related folds. 

The Songliao basin being of the form of an extensional 
basin would normally depict an evolutionary transition 
process of form, expand, shrink and disappear [39-41]. This 
can be inferred from the fact that the Songliao Basin was 
formed as a result of extensions along the margins due to 
relative movement through the subduction of the Pacific 
Plate which resulted in rifting, uplift and erosion, subsidence, 
and finally inversion [42]. Recent developments in respect 
of the Songliao basin’s architecture confirm the structural 
style as having gone through a polyphase evolution where 
rifting played a vital role [43] in its transitioning state, 
and thus subsequently resulting in the geological setting 
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Figure 3: Representation of Time –Depth conversion graphs.

Figure 4: Stack image of the study area.

Figure 5: Isopach map illustrating the tectonic location, structural units, 
internal units within the study area and geographic location of the Dehui 
depression.
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and around the basin which gives further indication of the 
occurrence of a Cretaceous detachment faulting system [45-
47].

Structural history
The Dehui depression is bounded by two major faults, 

Dexi fault and Dedong fault located to the west and to 
the east respectively. The basin structure of the Dehui 
depression was affected by the variations in these boundary 
faults evolution [48].

Due to episodic tectonic activity on the Dehui depression, 
fault activity had led to the formation of graben structures 
and control on the sedimentation process of the sequential 
formations [48]. The complex nature of the depression 
is depicted by the inverted structures which have thus 
provided favorable structural traps for the preservation of 
the hydrocarbon deposits. The inverted structures formed 
within the extensional basin had occurred due to the 
reactivation of thrust faults resulting from weak segments of 
the supporting lithosphere being subjected to compression 
[49]. Major controlling fault systems had occurred through 
multiple reactivation in the form of ductile shear, extension, 
strike slip and compression [50,51]. Also associated with the 
major faults were antithetic and synthetic faults within the 
Huoshiling Formation.

Tectono-Stratigraphic Setting
Based on the collated seismic sections (Figure 6), the 

poorly reflected basement comprises of Precambrian 
and Paleozoic igneous and metamorphic rocks which is 
observed to be overlain uncomfortably by Mesozoic and 
Cenozoic sedimentary rock sequences, with the entire basin 
being comprised of Jurassic, Cretaceous and Cenozoic rocks 
[42]. Interpretation of the seismic sections revealed that 
the identified stratigraphic horizon formations within the 
Dehui depression is divided into stages; pre-rift stage which 
consists of the Paleozoic, the syn-rift stage consisting of the 
Ying Cheng, Shahezi, and Huoshiling Formations and the 
post-rift stage consisting of the Qing Shankou, Quan Toa, 
Deng Lou Ku Formations, (Figure 7) [44,52-55].

Syn-rift unit
The Early syn-rift stage - Huoshiling Formation, the 

Rift-climax stage – Shahezi Formation, and the Late syn-rift 
stage – Ying Cheng Formation, all of which makes up the 
rift-related succession [53], and the Post rift stage which is 
characterized by the Rift depression transition stage – Deng 
Lou Ku Formation overlain by the other non-rift related 
successive formations, the Quan Toa and Qing Shankou 
Formations (Figure 7) [44].

The succession of sedimentary rocks from the Huoshiling 
Formation to the Ying Cheng Formation had been deformed 
extensively through rifting, uplifting, erosion, sagging and 
eventually structural inversion which led to the elevation of 
hanging walls and the creation of fault-related fold structures 
(Figure 6c).

The Huoshiling Formation consists predominantly of 
volcanic flows and pyroclastic rocks with an intercalation 
of clastic fluvial rocks. The Shahezi Formation consists of 
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Figure 6: Two-way Time Section of North West oriented seismic profiles 
depicting structures within the Dehui depression (a) Section 650 and (b) 
Section 700 showing reactivation of Fault A (c) Section 1600 detailing fault-
related folds.
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Figure 7: Schematic stratigraphic units within the study area [44,52-55].

of the Songliao basin being that of a double – sided active 
continental margin located between the two orogenic 
belts: Mongol – Okhotsk and the Sikhote – Alin orogenic 
belts [44]. The Songliao Basin had subsequently been acted 
on by tectonic forces which most importantly resulted in 
episodic tectonic inversion owing to alterations in the intra 
continental stress regime.

The Songliao Basin has been determined to be resting 
upon a Detachment fault system [42-44]. This is evidenced 
by the profound rift structures, thinned crust and the large-
scale cretaceous volcanism which gives a strong indication 
that the region had undergone a significant amount of 
extension. Distinct metamorphic core complexes within 
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siltstone, mudstone and intercalation of fine sandstone 
suggesting a transition from a fluvial controlled environment 
to a lacustrine controlled environment. The Ying cheng 
Formation consists of siltstone, mudstone with interstratified 
layers of medium to fine sandstone.

Post rift unit
The Deng Lou Ku Formation – Rift-depression stage 

depicts a period of quiescence and stability by which is 
characterized by minor tectonic activity and regional 
subsidence. The Deng Lou ku Formation which had endured 
a less intense deformation, which can be deduced as the time 
period at which inversion was likely to have ceased, though 
faulting continued but at a lesser extent which have been 
estimated to have occurred within the Late Cretaceous to 
Early Cenozoic.

The deposition of sediments by fluviatile and lacustrine 
means of transportation resulting in the overlaid sediments 
caused a significant amount of sag in the depression. In 
addition to this, recent studies suggest that the collapsing of 
large mafic magma chambers beneath the continental crust 
contributed significantly to the sagging event [56]. Both 
Quan Toa and Qing Shankou formations are almost flat-lying 
and do not depict significant amount of variation in thickness 
in their beds. Thickness increase in the post rift sedimentary 

strata indicates loading and flexural bending had caused a 
region wide subsidence. Kinematic motion along pre-existing 
normal faults and newly formed reactivated normal faults 
had contributing effects to the subsidence in the depression.

Inverted Structures
The inverted structures within the Dehui depression 

were created by the tectonic movement emanating from the 
subduction of the Pacific plate. The subduction of the Pacific 
plate directed towards North East Asia resulted in the entire 
Songliao basin being uplifted and subsequently led to the 
formation of several positive inversion structures [57]. 

The structural style within the Dehui depression 
is characterized by half-graben structures dissected 
by reactivated pre-existing normal faults and fold-
accommodation faults.

Inverted fault
The sequential reverse restoration of cross-section 

650 (Figure 8) depicts the structural inversion evolution 
involving a pre-existing normal fault. The relative movement 
of the hanging wall to the foot wall along the growth fault 
is quite characteristically noticeable. Restoration of the 
Quan Toa Formation and Deng Lou Ku Formations (Figure 
8) reveals that Fault A had been significantly reactivated 
due to the transition from the occurrence of inversion to 
depression during the deposition of the two formations. 
The transformation of the fault supports the generally 
accepted observation which suggests that structural 
inversion had mostly occurred within the Late Cretaceous 
(100.5 – 66 M.y.). Restoration of the underlying syn-rift 
units revealed insignificant transformation with mild 
inversion. The reactivated pre-existing normal fault had 
endured four phases of inversion with mild fault movement 
resulting in compressional shortening which were largely 
accommodated by wide gentle limbs of fault-related folds. 
Calculated fault inversion ratios for the reactivated major 
fault in section 650 (Figure 6a) and section 700 (Figure 6b) 
were 0.29 and 0.31 respectively which is indicative of a mild 
to moderate inversion.

Fault-related folds
Associated with inversion-related deformation are 

anticline-syncline pairs of which are more prominent within 
the syn-rift unit. Both syn-rift and the overlying post-rift 
units had endured different phases of compression (Figure 
8), resulting in the successive unit being shortened as a result 
of uplifting and folding along the reactivated pre-existing 
normal faults. The axial plane of the anticline is oriented 
almost parallel to the reactivated extensional major faults 
whilst its geometry depicted is asymmetrical in nature. The 
geometry of the syn-rift succession suggests that a pervasive 
and severe uplifting event had occurred within the Early 
Cretaceous (145-100.5 M.y.) had a major influence on the 
entire down-faulted depression, subsequently followed by 
severe erosion resulting in the Ying cheng strata depicting 
a pinch-out geometry overlying an uplifted area to the 
North-eastern region of the study area (Figure 4 and 5). The 
geometry of the folds in section 1600 (Figure 6c) depicts 
that of a Reverse-drag fold, as it shows significant variation 

(A) Present stage (F) Rifting stage of the Ying Cheng formation

(G) Inversion stage of the Shahezi formation

(H) Rifting stage of Shahezi formation

(I) Inversion stage of Huoshiling formation

(J) Rifting stage of Huoshiling formation

(B) Depression stage of the Quan Toa formation

(C) Inversion stage of Deng Lou Ku formation

(D) Depression stage of Deng Lou Ku formation

(E) Inversion stage of Ying Cheng formation
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in amplitude of the hanging-wall reverse-drag anticline 
being greater than the amplitude of the foot-wall reverse-
drag syncline [58]. 

Discussion
The Dehui depression is characterized by complex 

inverted structures featuring reactivated pre-existing 
normal faults and fault-related folds. Interpretation of the 
geometry of the folded structures suggests that a severe 
and pervasive uplift had occurred subsequently followed 
by a major unconformity specifically affecting the syn-rift 
succession prior to the fault-reactivated inversion which has 
been noted to be the most common structural style within 
the region [5].

The folds possessed gently dipping limbs geometrically 
asymmetrical to each other, thus supporting the premise 
that assumes that the faults had largely accommodated the 
shortening displacements due to inversion.

Restoration of the balanced cross-section reveals at least 
4 (four) phases of compressional-extensional movements. 
It had occurred with reference to inversion due to the 
tectonic stress regime originating from the subduction of 
the pacific plate. The observation emphasizes the fact that 
the depression had endured probably multiple phases 
of inversion tectonic mostly occurring within the Late 
Cretaceous, which is evidenced by kinematic movements 
along the reactivated pre-existing major normal faults which 
had been mild to moderately inverted.

Displacement along the major faults parallel to the 
direction of tectonic transport played a vital role in the 
structural style of the deformed structures been depicted 
as half-grabens which are indicative of the control over the 
style of deposition of the sediments with respect to the syn-
rift successive sequence. Lateral stratigraphic variation in 
thickness within the syn-rift unit suggests that the activity of 
inversion tectonic had a pervasive effect on the displacement 
of the unit. Shortening values obtained by comparing 
balanced cross sections to restored cross sections ranged 
from 1.32% to 5.98% (Table 1). The small range of values are 
indicative of the absence of back thrust or shortcut thrusting 
in the study area. Due to the small range in magnitude of 
shortening, development of thrusts is deemed unfavorably 
[59]. The absence of thrust is also indicative of the fact that 
the limbs of the asymmetric folds had widely accommodated 
the effect of shortening. Computed fault inversion ratio of 

fault A as illustrated in section 650 and section 700 (Figure 
6a and 6b) was obtained as 0.29 and 0.31 respectively. 
This is indicative of the presence of moderate inversion, 
which is in agreement with the noted most common 
pattern of inversion structures within the Songliao basin 
[5]. Computed Horizontal inversion ratio values obtained 
for the Huoshiling Formation reveals the complexity in the 
deformation within the terrain. Section 700 (Figure 6b) had 
a horizontal inversion ratio of 6.12. Shortening was obtained 
to be high within the middle section of the study area 
(Figure 5). This was as a response to the complex structural 
deformation being accommodated by the folds and also due 
to significant displacement within the stratigraphic unit as 
the major faults had endured multiple inversion movement. 
In restoring the cross-sections, the shortening in the syn-
rift unit ranged from 1.32% to 5.98% (Table 1). This is in 
agreement with the documented observation of tectonic 
activity with regards to the Songliao basin of which inversion 
complexity was predominantly afflicted in the east and 
decreased significantly towards the west [5]. The pinch-out 
geometry of the Ying Cheng Formation and the variation in 
thickness of both Shahezi and Huoshiling formations within 
the study area suggests that with the accumulation of syn-
rift growth strata, inversion tectonic had played a significant 
role in the lateral displacement of the stratigraphic units.

Conclusion
Based on the seismic data collected from the Dehui 

depression, the computed geometries of the inverted 
structures and restored balanced cross sections, the 
conclusion can be summarized as follows:

•	 The Dehui depression is characterized by partially 
inverted half-grabens oriented in the North-west direction 
and of which its syn-rift succession is pre-dominantly 
characterized by inverted structures associated with 
shortening owing to episodic inversion tectonic activity 
which had mostly occurred within the Late Cretaceous.

•	 Kinematics of the pre-existing major normal faults 
reveals that the major faults had endured four phases of 
compressional-extensional movements resulting in the 
inversion style being depicted as moderate inversion. 

•	 Reactivation of the pre-existing major normal faults 
had a major impact on the geometry of the fault-related 
folds. Due to episodic and non-uniform compressional 
and extensional motion, the folded structures within the 
syn-rift succession were asymmetric in geometry and had 
played a major role in accommodating the compressional 
stress emanating from the fault displacement as the effect 
of shortening was relatively minimal.
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