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Abstract
The shortcomings of the well-known solution of the Maxwell 

equations for a spherical wave are indicated. A new strict solution of 
these equations is proposed. This solution, when applied in antenna 
design systems, should allow more formalization of the antenna design 
process and should improve the quality of the antennas.
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Introduction
On the shortcomings of existing methods

The solution of the Maxwell equations for a spherical wave is 
necessary for the design of antennas. Such a problem arises in the 
solution of the equations of electrodynamics for an elementary electric 
dipole - a vibrator. The solution of this problem is known and it is on the 
basis of this solution that the antennas are constructed. At the same time, 
this solution has a number of shortcomings, in particular [1-4],

• The energy conservation law is satisfied only on the average,

• The solution is inhomogeneous and it is practically necessary to divide 
it into separate zones (as a rule, near, middle and far), in which the 
solutions turn out to be completely different,

• In the near zone there is no flow of energy with the real value

• The magnetic and electrical components are in phase,

• In the near zone, the solution is not wave (i.s. the distance is not an 
argument of the trigonometric function),

• The known solution does not satisfy Maxwell’s system of equations 
(a solution that satisfies a single equation of the system can not be 
considered a solution of the system of equations).

In Figure 1 [4] the picture of the lines of force of the electric field, 
constructed on the basis of the known solution is shown. Obviously, such 
a picture can not exist in a spherical wave.

Far from the vibrator-in the so-called the far zone, where longitudinal 
(directed along the radius) the electric and magnetic intensities can be 
neglected by, the solution of the problem is simplified. But even there 
the well-known solution has a number of shortcomings [1-4]. The main 
disadvantages of this solution are that

• the law of conservation of energy is fulfilled only on the average (in 
time),

• the magnetic and electrical components are in phase,
• in the Maxwell equations system, in the known solution, only one 

equation of eight is satisfied, that is, the known solution does not 
satisfy Maxwell’s system of equations.
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A New Approach
These shortcomings are a consequence of the fact that 

until now Maxwell’s equations for spherical coordinates 
could not be solved. A well-known solution is obtained 
after dividing the entire domain into so-called near, middle 
and far zones and after applying a variety of assumptions, 
different for each of these zones.

In practice, specified drawbacks of the known solution 
mean that they (mathematical solutions) do not strictly 
describe the real characteristics of technical devices. A 
more rigorous solution, obtained in [5], when applied in the 
design systems of such devices, must certainly improve their 
quality. This solution is briefly described below.

Solution of the Maxwell’s equations in spherical 
coordinates

n Figure 2, the system of spherical coordinates ( ϕθρ ,,
) are shown.

Next, we will place the formulas in tables and use the 
following notation:

T (table_number) - (column_number) - (line_number)

Table 1 (Eq. 1-3) lists the expressions for the rotor and 
the divergence of the vector E in these coordinates [6]. Here 
and below

E is electrical intensities, 

H is magnetic intensities, 

J is the density of the electric displacement current,

M is the density of the magnetic displacement current,

µ is absolute magnetic permeability,

ε is absolute dielectric constant. 

We establish the following notation:

( ) E E
E ρ ρ
ρ

∂
Ψ = +

ρ ∂ρ
               (1)

( ) ( )
( )
( )tg
EE

T E ϕϕ
ϕ

 ∂
 = +
 θ ∂ θ 

                              (2)

With these designations taken into account, the formulas 
in Table 1 take the form given in Table 1. In the Table 2 we 
write the Maxwell equations.

Thus, there are eight Maxwell equations with six 
unknowns. This system is overdetermined. We have to 
admit that in a spherical wave there are radial intensities. 
However, even so, the system of Maxwell’s equations 
remains redefined. 

Let us also assume that there are radial electric currents 
of displacement. This assumption does not remove the 
problem of over determination, but adds one more problem. 
The point is that the sphere has an ideal symmetry and the 
solution must obviously be symmetrical.

It is suggested that there are also radial magnetic 
displacement currents. Such an assumption does not require 
the existence of magnetic monopoles as well; the existence 
of electric displacement currents does not follow from the 
existence of electric charges.

Next, we will look for the solution in the form of the 
functions E, H, J, M, presented in Table 3 (Eq. 2), where the 
actual functions of the form ( )θg  and ( ) ( ),  ,e hρ ρ  ( ) ,j ρ  
( )m ρ  are to be calculated, and the coefficients , ∝ ω

 
are 

known. 

Under these conditions, we transform the formulas from 
Table 1 (Eq. 3 and 4), where the following notations are 
adopted:

( )( )
( )

,
e

e ϕ
ϕ

∂ ρ
=

∂ ρ
                      (3)

q t= χρ+ω                 (4)

(2, 4) we find:

( ) ( )
( ) ( ) ( )sin

cos cos( ) 2 cos cos( )T E e q e q
tgϕ ϕ ϕ

 θ
= + θ = θ  θ 

        (5)

Similarly,

Figure 1: The picture of the lines of force of the electric field, constructed on 
the basis of the known solution.

 

Figure 2: the system of spherical coordinates ( ϕθρ ,, ).
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( ) ( ) ( )2 cos sinT E e qθ θ= θ                     (6)

( ) ( ) ( )2 cos sinT H h qϕ ϕ= θ                    (7)

( ) ( ) ( )2 cos cosT H h qθ θ= θ                      (8)

With these designations taken into account, the formulas 
in Table 1 (Eq. 1-3) take the form given in Table 1 (Eq. 1-4). 
In Table 2 (Eq. 2) we write the Maxwell equations taking into 
account the radial displacement currents. Further, we take 
condition

0α =                  (9)

We substitute the rotors and divergences from Table 
1 (Eq. 4) into Table 2 (Eq. 2) equations, take into account 
condition (9). Then, after cumbersome transformations, the 
equations in Table 2 (Eq. 2) is shortened and the system of 
equations takes the form shown in Table 3 and 4 (Eq. 2). This 
system of equations has the following solution:

c
ω

χ = εµ              (10)

/ , / ,e A e Aϕ θ= ρ = ρ             (11)

/ , / ,h B h Bϕ θ= − ρ = ρ            (12)

B
A

ε
=

µ
                  (13)

Here A and B are constants. The functions ,  h eρ ρ  are 
solutions of the differential equations of the following form:

2
3

2 2 0,Ae e eρ ρ ρ+ + χ − =
ρ ρ

           (14)

 1 2 3 4

1 ( )rot Eρ ( ) ( )sin
E E E

tg
φ φ θ

ρ θ ρ θ ρ θ φ
∂ ∂

+ −
∂ ∂

( )
( )sin

T E i Eφ θα
ρ ρ θ

−

5 ( )Hρrot ( ) ( )sin
H H H
tg

φ φ θ

ρ θ ρ θ ρ θ φ
∂ ∂

+ −
∂ ∂

( )
( )sin

T H i Hφ θα
ρ ρ θ

−

2 ( )Eθrot ( )sin
E E Eρ φ φ

ρ θ φ ρ ρ
∂ ∂

− −
∂ ∂ ( ) ( )

sin
i E

Eρ
φ

α
ψ

ρ θ
−

3 ( )Eϕrot
EE E ρθ θ

ρ ρ ρ φ
∂∂

+ −
∂ ∂

( )
i E

E ρ
θ

α
ψ

ρ
−

6 ( )Hθrot ( )sin
H H Hρ φ φ

ρ θ φ ρ ρ
∂ ∂

− −
∂ ∂ ( ) ( )

sin
i H

Hρ
φ

α
ψ

ρ θ
−

7 Hϕrot
HH H ρθ θ

ρ ρ ρ φ
∂∂

+ −
∂ ∂

( )
i H

H ρ
θ

α
ψ

ρ
−

4 div(E)
( )

( )sin

E E E
tg

EE

ρ ρ θ

φθ

ρ ρ ρ θ

ρ θ ρ θ φ

∂
+ + +
∂

∂∂
+ +

∂ ∂

( ) ( )
( )sin

i ET E
E φθ
ρ

α
ψ

ρ ρ θ
+ +

8 div(H)
( )

( )sin

H H H
tg

HH

ρ ρ θ

φθ

ρ ρ ρ θ

ρ θ ρ θ φ

∂
+ + +

∂

∂∂
+ +

∂ ∂

( ) ( )
( )sin

i HT H
H φθ

ρ

α
ψ

ρ ρ θ
+ +

Table 1: Lists the expressions for the rotor and the divergence of the vector E
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2
3

2 2 0.Bh h hρ ρ ρ+ + χ − =
ρ ρ

           (15)

After this, the functions ( ) ( ) ( ) ( ),   J , ,   mj mρ ρ ρ ρρ ρ ρ ρ  can 
be found using the equations in Table 4 (Eq. 2.1 and 2.5).

In particular, for å ì= , for example, for a vacuum, we 
find from previous equations that A=B and

1 2 3

1. ( ) 0
H

rot E M
c t

ρ
ρ ρ

∂µ
+ − =

∂
( )

0
T E i H

M
c

ϕ ρ
ρ

ωµ
+ − =

ρ

5.
( ) 0

E
rot H J

c t
ρ

ρ ρ
∂ε

− − =
∂

( )
0

T H i E
J

c
ϕ ρ

ρ
ωε

− − =
ρ

2. ( ) 0Hrot E
c t

θ
θ

∂µ
+ =

∂
( ) 0i HE

c
θ

ϕ
ωµ

−Ψ + =

3. ( ) 0
H

rot E
c t

ϕ
ϕ

∂µ
+ =

∂
( ) 0

i H
E

c
ϕ

θ
ωµ

Ψ + =

6. ( ) 0Erot H
c t

θ
θ

∂ε
− =

∂
( ) 0i EH

c
θ

ϕ
ωε

−Ψ − =

7. ( ) 0
E

rot H
c t

ϕ
ϕ

∂ε
− =

∂
( ) 0

i E
H

c
ϕ

θ
ωε

Ψ − =

4. div(E)=0 ( ) ( )
0

T E
E θ
ρΨ + =

〉

8. div(H)=0 ( ) ( )
0

T H
H θ
ρΨ + =

〉

Table 2: Maxwell equations.

1 2

1 ( ) ( )sin cosE e tθ θ= θ χρ+ω

2 ( ) ( )sin sinE e tϕ ϕ= θ χρ+ω

3 ( ) ( ) ( )( )cos cos sinE e t e tρ ρ ρ= θ χρ+ω + χρ+ω

4 ( ) ( ) ( )( )cos sin cosJ j t j tρ ρ ρ= θ χρ+ω + χρ+ω

5 ( ) ( )sin sinH h tθ θ= θ χρ+ω

6 ( ) ( )sin cosH h tϕ ϕ= θ χρ+ω

7 ( ) ( ) ( )( )cos sin cosH h t h tρ ρ ρ= θ χρ+ω + χρ+ω

8 ( ) ( ) ( )( )cos cos sinM m t m tρ ρ ρ= θ χρ+ω + χρ+ω

Table 3: Solution in the form of the functions E.

1 2

1.
2 ; e h j h j

c cϕ ρ ρ ρ ρ
µ µ

− ω = ω =
ρ

5.
2 ; h e m e m

c cϕ ρ ρ ρ ρ
ε ε

+ ω = ω =
ρ

2.
1 ; 0e e e h

cϕ ϕ ϕ θ
µω

= − −χ + =
ρ

6.
1 ; 0 h h h e

cϕ ϕ ϕ θ
εω

= − χ + =
ρ

3.
1 ; 0e e e h

cθ θ θ ϕ
µω

= − −χ − =
ρ

7.
1 ; 0h h h e

cθ θ θ ϕ
εω

= − χ − =
ρ

2.
1e e e h

cϕ ϕ ϕ ϕ
µω

= −χ − +
ρ

6.
1h h h e

cϕ ϕ ϕ θ
εω

= χ − −
ρ

3.
1e e e h

cθ θ θ ϕ
µω

= χ − −
ρ

7.
1h h h e

cθ θ θ ϕ
εω

= −χ − +
ρ

4.

1
1 2 0e e e eρ ρ ρ θ

 
+ χ + + = ρ ρ 

2
1 0ee eρ ρ ρ

 
− χ + = ρ 

8.

1
1 2 0h h h hρ ρ ρ θ

 
− χ + + = ρ ρ 

2
1 0hh hρ ρ ρ

 
+ χ + = ρ 

Table 4: Maxwell equations in spherical coordinates.
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h eρ ρ=               (16)

In particular, for A=B and a small value of χ , these 
functions take the following form:

( )( )1 2 ln ,h e G Aρ ρ= = − + × ρ
ρ

           (17)

,Dh eρ ρ= =
ρ

             (18)

2
2  A Dj

cρ
µω

= − ×
ρρ

            (19)

( )( )1 2 lnj G A
cρ
µω

= − × + × ρ
ρ

           (20)

2
2B Dm

cρ
εω

= − + ×
ρρ

           (21)

( )( )1 2 lnm G A
cρ
εω

= − × + × ρ
ρ

          (22)

Here G is a constant that can take different values for the 
functions eρ  and eρ , D is a constant that can take different 
values for the functions eρ  and hρ.

Conclusions
Thus, the system of Maxwell equations in spherical 

coordinates has a solution presented in Table 3 (Eq. 2), 
where the unknowns are determined from (10-15, Table 4 
(Eq. 2.1 and 2.5). The main properties of this solution are as 
follows (Figure 3):

• The solution is monochromatic.

• There are electric and magnetic intensities along all 
coordinate axes.

The electric and magnetic intensities of the same name 
(according to coordinates ρ , ϕ , θ ) are phase shifted by a 
quarter of a period.

The amplitudes of the transverse wave intensities are 
proportional to 1 −ρ .

There is a longitudinal electromagnetic wave having 
electric and magnetic components, i.e. there are radial 
electric and magnetic intensities.

• The energy flux directed along the radius retains its value 
with increasing radius and does not depend on time, 
which corresponds to the law of conservation of energy.

• There are radial electric and magnetic displacement 
currents.

• A more rigorous solution to this problem, when applied in 
antenna design systems,

• should allow more strictly formalize the process of 
designing antennas,

• should improve the quality of antennas.

Therefore, based on the solution found, it is advisable to 
begin developing a new system for the automated design of 
antennas. 

On the basis of this same theory, the problem of detecting 
the position of the radiation source by measuring the 
intensities of the electromagnetic field in a limited region of 
the radar can be solved.
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